纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 128-135.doi: 10.13475/j.fzxb.20221100101

• 染整工程 • 上一篇    下一篇

蒽醌型染料分子羟基最优取代位置的多目标优化设计方法

颜素崟, 周丽春(), 郑庭, 金福江   

  1. 华侨大学 机电及自动化学院, 福建 厦门 361021
  • 收稿日期:2022-11-01 修回日期:2023-09-28 出版日期:2024-01-15 发布日期:2024-03-14
  • 通讯作者: 周丽春(1978—),女,副教授,博士。主要研究方向为染整生产过程建模与分析、分子动力学建模。E-mail:13905958730@163.com
  • 作者简介:颜素崟(1998—),女,硕士。主要研究方向为染料分子建模、分子动力学分析。
  • 基金资助:
    福建省产学研合作重大项目(2021H6028);辽宁省自然科学基金计划项目(2022KF2104)

Multi-objective optimization design method for optimal hydroxyl substitution position in anthraquinone dyes

YAN Suyin, ZHOU Lichun(), ZHENG Ting, JIN Fujiang   

  1. College of Electromechanical and Automation, Huaqiao University, Xiamen, Fujian 361021, China
  • Received:2022-11-01 Revised:2023-09-28 Published:2024-01-15 Online:2024-03-14

摘要:

为解决染料分子设计中染料溶解度与色谱深度2个指标的矛盾问题,首先将染料溶解度与色谱深度2个目标优化问题转化成以染料分子溶解度为优化目标函数,色谱深度函数为约束,羟基取代位置为优化变量的单目标0-1规划问题。其中染料溶解度用内聚能表示,建立了内聚能与羟基取代位置的模型;染料色谱深度用可见光波段的最大吸收光谱强度表示,建立了最大吸收光谱强度与分子母体上的羟基数和羟基取代位置的模型。然后根据蒽醌型染料分子结构的几何特征,以分子对称性为一层启发规则,排除重复取代位置,减少可行路径;通过隐数法迭代计算出在色谱深度不低于设定值条件下,内聚能减小最多的羟基最优取代位置。最后以一种蒽醌型染料母体为实例,进行不同羟基数和羟基最优取代位置及数量溶解过程模拟实验,将其溶解度与实际相似结构染料进行对比,结果表明本文分子结构优化设计方法具有有效性。

关键词: 蒽醌型染料, 羟基, 溶解度, 隐数法, 分子对称性, 最优取代, 染料分子设计

Abstract:

Objective With the increase of molecular weight, the chromatographic depth of dyes increases, but the solubility of dyes in supercritical carbon dioxide decreases. In order to design a dye molecular whose solubility and chromatographic depth meet the requirements, the above contradiction between solubility and chromatographic depth must be solved.

Method In this research, the two objective optimization problems about dye solubility and chromatographic depth were transformed into a single objective 0-1 programming problem. Among the problem, dye molecular solubility was regarded as the optimization objective function, and the chromatographic depth function was regarded as the constraint. In the program, the dye solubility was expressed by cohesive energy, and the model of cohesive energy and hydroxyl substitution position was established. The chromatographic depth of the dye was expressed by the maximum absorption spectral intensity in the visible light band. According to the geometric characteristics of the molecular structure of anthraquinone dyes, molecular symmetry was used as a heuristic rules to eliminate repeated substitution positions and reduce feasible paths, and the implicit number method was used to iteratively calculate the optimal substitution position of hydroxyl group.

Results The 5,7,12,14-pentaphentetra ketone molecule was taken as example for research. The cohesive energy and light absorption strength were calculated by the computer molecular dynamics simulation platform and relevant analysis software. Based on the above data, an optimization model was constructed, and the optimal molecular structure was obtained by solving the model. In order to determine whether the chromatographic depth of the optimal dye met the requirement, the UV absorption spectra about two molecular structures were compared. The light absorption intensity of the dyes substituted at positions 1, 4, and 6 was obviously higher than that of the dyes inserted with hydroxyl groups at other positions. Therefore, the chromatographic depth of the optimal dye met the requirement. Through molecular dynamics simulation of the optimal dye molecular structure and the actually produced Disperse Violet 26, the difference between the cohesive energies obtained from the two experiments was compared. It was seen that the designed optimal dye has greater cohesive energy and better solubility than Disperse Violet 26. The effectiveness of the design method was thus proved.

Conclusion With the increase of benzene rings in dye structure, more functional groups can be inserted into the molecular structure and it highlights the advantages of optimal design despite the longer reaction period. Symmetry is adopted to eliminate symmetrical positions, making the optimization calculation simpler. Another achievement from the research is the use of the implicit method to calculate the optimal number of functional groups and replacement positions at one time, which is more efficient than the combination optimization. Areas for improvement are also identified for future research. Firstly, plane symmetry is adopted to find symmetry points in this research, but the plane symmetry of anthraquinone dyes is directly related to many variables such as the intermolecular interaction, the state of molecular plane motion, cohesive energy and solubility. In order to improve the efficiency and accuracy of design, it is possible to establish the model of symmetry and state of molecular plane motion, the model of cohesive energy and solubility to design optimal dyes from molecular geometric structure. Secondly, the part of validation in this research is completed on the molecular dynamics platform. When solubility and chromatography are verified by actual dyeing experiments after the optimal dye is synthesized and manufactured, the conclusion of this research would be further proved.

Key words: anthraquinone type dye, hydroxyl group, solubility, implicit number method, molecular symmetry, optimal substitution, dye molecular design

中图分类号: 

  • TQ613.24

图1

蒽醌型染料母体与取代位置编号"

表1

母体取代位置排序表"

母体取代位置 x 1 x 2 x i
官能团位置取值 1/0 1/0 1/0

图2

蒽醌分子取代位置排序图"

图3

实例验证分子结构与取代位置编号"

表2

不同取代位置所对应的内聚能以及色谱深度"

羟基取代位置 内聚能/J 色谱深度
(1,0,0,…,0) 6.169 11 262.338
(0,1,0,…,0) 7.374 10 490.239
(0,0,0,0,1,…) 6.693 9 958.717

图4

最优染料分子结构"

图5

染料结构可见光波段紫外光谱图"

图6

分散紫26"

[1] 韩之欣, 吴伟, 王健. 分散染料在超临界二氧化碳流体中的溶解性[J]. 纺织学报, 2022, 43(1): 153-160.
HAN Zhixin, WU Wei, WANG Jian, et al. Solubility of disperse dyes in supercritical carbon dioxide fluids[J]. Journal of Textile Research, 2022, 43(1): 153-160.
[2] TAE-HEON K, BYUNG-JUN L, SUNG-OK A, et al. The synthesis of red dyes based on diketo-pyrrolo-pyrrole chromophore to improve heat stability and solubility for color filter fabrication[J]. Dyes and Pigments, 2019, 174:546-549.
[3] 张天庆, 杜健军, 陈鹏, 等. 1,4-二氨基-2,3-邻苯二甲酰亚胺蒽醌染料的合成与应用[J]. 精细化工, 2019, 36(9):1949-1955.
ZHANG Tianqing, DU Jianjun, CHEN Peng, et al. Synthesis and application of 1,4-diamino-2,3-phthalimide anthraquinone dye[J]. Fine Chemicals, 2019, 36(9): 1949 -1955.
[4] 赵文宪. 有机物的分子结构与颜色的关系[J]. 大学化学, 1992, 7(4):47-51.
ZHAO Wenxian. The relationship between molecular structure and color of organic matter[J]. University Chemistry, 1992, 7(4):47-51.
[5] 贾利娜. 基于分子模拟方法丙磺舒药物固液相平衡研究[D]. 北京: 北京化工大学, 2018:1-20.
JIA Lina. Study on solid-liquid phase equilibrium of probenecid based on molecular simulation[D]. Beijing: Beijing University of Chemical Technology, 2018:1-20.
[6] 易甜. 超临界染色过程染料溶解的微观模型研究[D]. 厦门: 华侨大学, 2021:1-20.
YI Tian. Research on the microscopic model of dye dissolution in supercritical dyeing process[D]. Xiamen: Huaqiao Univrsity, 2021:1-20.
[7] 赵蕾. 基于计算机辅助药物设计的抗癌环肽分子设计研究[D]. 哈尔滨: 哈尔滨师范大学, 2023:3-40.
ZHAO Lei. Molecular design of anticancer cyclic peptides based on computer aided drug design[D]. Harbin: Harbin Normal University, 2023:3-40.
[8] VALENCIA-MARQUEZ D, FLORES-TLACUAHUAC Antonio, GUELLAR-GARCIA A J, et al. Computer aided molecular design coupled with molecular dynamics as a novel approach to design new lubricants[J]. Computer & Chemical Engineering, 2022.DOI: 10.1016/j.compchemeng.2021.107523.
[9] 楚贝贝. 超临界CO2染色染料分子结构及合成优化设计[D]. 厦门: 华侨大学, 2020:1-30.
CHU Beibei. Optimal design of dye molecular structure and synthesis in supercritical CO2 dyeing[D]. Xiamen: Huaqiao University, 2020:1-20.
[10] DRAPER S L, MONTERO G A, SMITH B, et al. Solubility relationships for disperse dyes in supercritical carbon dioxide[J]. Dyes and Pigments, 2000, 45(3): 177-183.
doi: 10.1016/S0143-7208(00)00008-5
[11] HAN Chuanbing, SUN Huihui, HOU Chaofeng, et al. Molecular dynamics study of the effect of substrate temperature on the barrier behavior in aluminum oxide Josephson junctions[J]. Applied Surface Science, 2023.DOI:10.1016/J.APSUSC.2023.156369.
[12] 刘弋菲. 量子化学计算软件在高中化学物质结构教学中的应用[D]. 呼和浩特: 内蒙古师范大学, 2022. DOI: 10.27230/d.cnki.gnmsu.2022.000442.
LIU Yifei. Application of quantum chemistry computing software in the teaching of chemical substance structure in high school[D]. Hohhot: Inner Mongolia Normal University, 2022. DOI: 10.27230/d.cnki.gnmsu.2022.000442.
[13] 侯崇明, 杨永强, 呙福德. (0-1)整数规划的启发式算法及其应用条件的确立[J]. 西北工业大学学报, 1992(3):401-409.
HOU Chongming, YANG Yongqiang, WO Fude. A heuristic algorithm for (0-1) integer programming[J]. Journal of Northwestern Polytechnecal University, 1992(3): 401-409.
[14] LU Tian, CHEN Feiwu. Multiwfn: a multifunctional wavefunctional analyzer[J]. J Comput Chem, 2012, 33: 580-592.
doi: 10.1002/jcc.22885 pmid: 22162017
[15] SUN Yao, JIAO Yanqi, SHI Chengcheng, et al. Deep learning-based molecular dynamics simulation for structure-based drug design against SARS-CoV-2[J]. Computational and Structural Biotechnology Journal, 2022, 20: 5014-5027.
doi: 10.1016/j.csbj.2022.09.002 pmid: 36091720
[16] SHI Yingxian, LI Shenhui, ZHAO Zhiping. Molecular simulations of the effects of substitutions on the dissolution properties of amorphous cellulose acetate[J]. Carbohydrate Polymers, 2022.DOI: 10.1016/j. carbpol.2022.119610.
[17] ŞAHINER Ahmet, ERMIŞ Temel, ERMIŞ Emel. Optimization of energy surface of thiophene-benzothiazole derivative Schiff base molecule with fuzzy logic model-ling[J]. Computational and Theoretical Chemistry, 2022. DOI: 10.1016/j.comptc.2022.113680.
[18] BASAK, Subhash C, BHATTACHARJEE Apurba K. Computational approaches for the design of mosquito repellent chemicals[J]. Current Medicinal Chemistry, 2020, 27(1): 32-41.
doi: 10.2174/0929867325666181029165413 pmid: 30378480
[19] 王纯怡, 吴伟, 王健, 等. C.I.分散棕19在超临界CO2及水中溶解性的分子动力学模拟[J]. 纺织学报, 2020, 41(9): 95-101.
WANG Chunyi, WU Wei, WANG Jian, et al. Molecular dynamics simulation of solubility of C.I. disperse brown 19 in supercritical CO2and water[J]. Journal of Textile Research, 2020, 41(9):95-101.
[20] 陈宝林. 最优化理论与算法[M]. 北京: 清华大学出版社, 2005: 440.
CHEN Baolin. Optimization theory and algorithm[M]. Beijing: Tsinghua University Press, 2005: 440.
[1] 聂文琪, 许帅, 高俊帅, 方斌, 孙江东. 聚(3-羟基丁酸-3-羟基戊酸酯)改性涤纶长丝的降解性能[J]. 纺织学报, 2023, 44(09): 35-42.
[2] 唐奇, 柴丽琴, 徐天伟, 王成龙, 王直成, 郑今欢. 聚乳酸/聚3-羟基丁酸-戊酸酯共混纤维及其雪尼尔纱的染色动力学[J]. 纺织学报, 2023, 44(06): 129-136.
[3] 易菁源, 裴刘军, 朱赫, 张红娟, 王际平. 非水介质染色体系中分散染料对涤纶/棉混纺织物的沾色研究[J]. 纺织学报, 2023, 44(05): 29-37.
[4] 钱红飞, KOBIR MD. Foysal, 陈龙, 李林祥, 方帅军. 聚乳酸/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)共混纤维的结构及其织物染色性能[J]. 纺织学报, 2023, 44(03): 104-110.
[5] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[6] 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21.
[7] 苏子越, 单颖法, 巫莹柱, 秦介垚, 彭美婷, 王晓梅, 黄美林. 碳纤维织物基形状记忆复合材料的制备及其性能[J]. 纺织学报, 2022, 43(11): 75-80.
[8] 吴焕岭, 谢周良, 汪阳, 孙万超, 康正芳, 徐国华. 胶原蛋白改性聚乳酸-羟基乙酸载药纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(11): 9-15.
[9] 王菊, 张丽平, 王晓春, 杨萌阳. 高疏水性染料的制备及其对超高分子量聚乙烯织物的染色性能[J]. 纺织学报, 2022, 43(04): 97-101.
[10] 李龙龙, 魏朋, 吴萃霞, 闫金飞, 娄贺娟, 张一风, 夏于旻, 王燕萍, 王依民. 基于对羟基苯丙酸的生物基液晶共聚酯纤维的合成与性能[J]. 纺织学报, 2022, 43(01): 9-14.
[11] 靳琳琳, 田俊凯, 李家炜, 戚栋明, 沈晓炜, 邬春涛. 可降解聚羟基乙酸低聚物改性聚酯的合成及其性能[J]. 纺织学报, 2021, 42(01): 16-21.
[12] 唐峰, 余厚咏, 周颖, 李营战, 姚菊明, 王闯, 金万慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)复合膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 8-15.
[13] 孙范忱, 郭静, 于跃, 张森. 聚羟基脂肪酸酯/海藻酸钠纳米纤维的制备及其性能[J]. 纺织学报, 2020, 41(05): 15-19.
[14] 胡金花, 闫俊, 李红, 彭建钧, 郑来久, 郑环达, 何婷婷. 分散红11在超临界二氧化碳中的溶解度及其模型拟合[J]. 纺织学报, 2019, 40(08): 80-84.
[15] 莫达杰, 李旭明, 许增慧. 聚(3-羟基丁酸-co-3-羟基戊酸共聚酯)/聚乳酸阻燃纤维的制备及其性能[J]. 纺织学报, 2019, 40(05): 12-17.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!