纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 1-10.doi: 10.13475/j.fzxb.20221101501

• 纤维材料 •    下一篇

共聚阻燃改性聚对苯二甲酸乙二醇酯的制备及其性能

吴雨航1, 魏建斐1,2, 顾伟文1, 王玉萍3, 张安莹1, 王锐1()   

  1. 1.北京服装学院 材料设计与工程学院, 北京 100029
    2.北京服装学院 服装材料研究开发与评价北京市重点实验室, 北京 100029
    3.江苏新视界先进功能纤维创新中心有限公司, 江苏 苏州 215228
  • 收稿日期:2022-11-04 修回日期:2023-04-11 出版日期:2024-06-15 发布日期:2024-06-15
  • 通讯作者: 王锐(1963—),女,教授,博士。主要研究方向为高分子材料的高性能化与功能化。E-mail:clywangrui@bift.edu.cn
  • 作者简介:吴雨航(1999—),女,硕士。主要研究方向为碳点及功能纤维的制备与应用。
  • 基金资助:
    北京学者计划(RCQJ20303);北京市自然科学基金项目(2222054号);北京市教委科技计划项目(KM202110012007)

Preparation and properties of flame retardant modified polyethylene terephthalate by in-situ polymerization

WU Yuhang1, WEI Jianfei1,2, GU Weiwen1, WANG Yuping3, ZHANG Anying1, WANG Rui1()   

  1. 1. School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Institute of Fashion Technology, Beijing 100029, China
    3. New Vision Advanced Functional Fiber Innovation Center Co., Ltd., Suzhou, Jiangsu 215228, China
  • Received:2022-11-04 Revised:2023-04-11 Published:2024-06-15 Online:2024-06-15

摘要:

针对聚对苯二甲酸乙二醇酯(PET)阻燃性较差的问题,以[(6-氧代-6H-二苯并[c,e][1,2]氧磷杂己环-6-基)甲基]丁二酸(DDP)和明胶基碳点(gCDs)构建复合阻燃体系,采用原位聚合法制备了阻燃DDP-gCDs-PET,借助扫描电子显微镜、傅里叶变换红外光谱仪对其结构进行分析,通过极限氧指数(LOI)、垂直燃烧(UL-94)及锥形量热指标研究了不同质量分数的gCDs与DDP复配后对PET阻燃性能的影响,并利用热重-傅里叶变换红外光谱分析探究了阻燃PET在气相中的热分解产物,提出了DDP、gCDs对PET的阻燃机制。结果表明:当添加DDP质量分数为8%、gCDs质量分数为1.0%时,DDP-gCDs-PET的UL-94等级提升至V-0级,LOI值可达到35%;相较于纯PET,DDP-gCDs-PET的热释放速率峰值降低39.77%,总热释放量降低25.00%,引燃时间延长25 s,阻燃效果显著改善;在燃烧过程中DDP促进了PET基体分解并在气相中淬灭自由基,gCDs使热量迅速扩散,提升了PET基体的热稳定性能,且gCDs在凝聚相促进成炭使DDP中的P留存于炭层中,二者共同作用提升了PET的阻燃性能。

关键词: 聚对苯二甲酸乙二醇酯, 明胶基碳点, 磷系阻燃剂, 原位聚合法, 复配阻燃, 阻燃机制

Abstract:

Objective Polyethylene terephthalate (PET) is widely used because of its excellent comprehensive properties, but PET has poor flame retardancy, which greatly limits its application. Traditional halogenated flame retardants have great impact on the environment during combustion and cause damage to people's eye sight. Hence, the research of new halogen-free flame retardants is imperative.

Method In this study, flame retardant polyester (DDP-gCDs-PET) was prepared with [(6-oxo-6H-dibenzo[c,e][1,2]oxahex-6-yl)methyl]succinic acid (DDP) and gelatin-based carbon dots (gCDs) as flame retardant by in-situ polymerization. To explore the flame retardant properties of PET, a study was conducted using limiting oxygen index (LOI), vertical combustion (UL-94) and cone calorimetry to assess the influence of gCDs with varying mass fractions.

Results gCDs are quasi-spherical in structure, with an average particle size of about 3.34 nm and good dispersion. FT-IR spectra demonstrated the presence of amino groups and carboxyl groups on the surface of gCDs. In addition, FT-IR spectra also demonstrated the successful introduction of gCDs, DDP into PET molecular chains. When DDP was 8% and gCDs were 1.0% (named DDP-1.0gCDs-PET), the glass transition temperature of DDP-1.0gCDs-PET was increased by 9.33% compared with that of pure PET. The temperature at which ester mass decreases by 5% of DDP-1.0gCDs-PET was increased by 10.32 ℃ compared to that of DDP-PET. Compared with PET, the peak heat release rate of DDP-1.0gCDs-PET was reduced by 39.77%, the total heat release was reduced by 25.00%, and the time to ignition was delayed by 25 s compared with that of PET. UL-94 and LOI studies show that DDP-1.0gCDs-PET had a LOI of up to 35%, and UL-94 was upgraded from V-2 to V-0. After the combustion of flame-retardant polyester, a continuous dense carbon layer was formed, which effectively hinders the spread of heat and gas and improves the flame retardant performance of the matrix. It is evident that DDP promoted the decomposition of the matrix and played the role of quenching free radicals when the matrix was burned. The addition of gCDs significantly reduced the concentration of CO2 and CO in meteorological products and improved the quality of the carbon layer.

Conclusion Compared with pure PET, the flame retardant effect of DDP-gCDs-PET is significantly improved. The flame retardant mechanism of DPP and gCDs in PET system is understood. During the combustion process, gCDs absorb heat to form a heat conduction network, so that the heat diffuses rapidly and evenly in the matrix and delays the combustion of the matrix. DDP promotes decomposition of the matrix, while producing P=O to quench free radicals in the gas phase and dilute combustible groups in the gas. gCDs promote the retention of P in DDP in the carbon layer, forming a large number of dense and continuous high-quality carbon layers in the solidified phase to achieve the purpose of flame retardancy.

Key words: polyethylene terephthalate, gelatin-based carbon dot, phosphorus-based flame retardant, in situ polymerization method, compound flame retardant, flame retardant mechanism

中图分类号: 

  • TQ323.4

表1

样品的制备配比"

样品名称 PTA质
量/g
EG质
量/g
gCDs
质量分
数/%
DDP
质量分
数/%
PET 700 314 0 0
DDP-PET 700 314 0 8
DDP-0.5gCDs-PET 700 314 0.5 8
DDP-1.0gCDs-PET 700 314 1.0 8
DDP-1.5gCDs-PET 700 314 1.5 8

图1

gCDs的透射电子显微镜照片和粒径分布图"

图2

gCDs的傅里叶变换红外光谱图"

图3

阻燃改性前后PET的傅里叶变换红外光谱图"

图4

阻燃改性前后PET的DSC曲线"

表2

阻燃改性前后PET的DSC数据"

样品名称 Tg Tcc Tm Tmc ΔTmc
PET 69.0 118.3 249.2 213.1 36.1
DDP-PET 75.3 142.2 238.6 177.4 61.2
DDP-0.5gCDs-PET 73.4 138.6 237.1 180.7 56.4
DDP-1.0gCDs-PET 76.1 135.3 240.5 184.5 56.0
DDP-1.5gCDs-PET 75.9 135.1 238.9 179.2 59.7

图5

阻燃改性前后PET的热重曲线"

表3

阻燃改性前后PET热重数据"

样品名称 T5%/℃ Tmax/℃ 700 ℃残炭
量/%
PET 395.70 434.64 10.57
DDP-PET 371.77 447.39 3.93
DDP-0.5gCDs-PET 377.93 445.94 8.14
DDP-1.0gCDs-PET 382.09 446.96 4.63
DDP-1.5gCDs-PET 384.09 447.08 4.09

图6

阻燃改性前后PET的锥形量热曲线"

表4

阻燃改性前后PET的锥形量热参数"

样品名称 引燃时间/
s
热释放速率峰值/
(kW·m-2)
总释放热/
(MJ·m-2)
PET 59 808.48 74.72
DDP-PET 52 430.48 55.93
DDP-0.5gCDs-PET 75 765.61 52.59
DDP-1.0gCDs-PET 84 486.92 56.04
DDP-1.5gCDs-PET 69 437.71 56.78

表5

阻燃改性前后PET的极限氧指数和垂直燃烧测试结果"

样品名称 LOI值/
%
垂直燃烧测试
t1/s t2/s 等级
PET 21 15.0 16.0 NR
DDP-PET 26 1.7 1.5 V-2
DDP-0.5gCDs-PET 30 1.9 1.8 V-2
DDP-1.0gCDs-PET 35 1.8 2.0 V-0
DDP-1.5gCDs-PET 33 1.2 0.8 V-0

图7

锥形量热实验后残炭的宏观形貌以及SEM照片"

图8

锥形量热测试后炭层的傅里叶变换红外光谱图"

图9

阻燃改性前后PET的三维傅里叶变换红外光谱图"

图10

阻燃改性前后PET在不同温度下热分解产物的傅里叶变换红外光谱图"

[1] AURORE Vannier, SOPHIE Duquesne, SERGE Bourbigot, et al. The use of POSS as synergist in intumescent recycled poly(ethylene terephthalate)[J]. Polymer Degradation and Stability, 2008, 93(4): 818-826.
[2] ZHOU Shanshan, YANG Yubin, ZHU Zhe, et al. Preparation of a halogen-free flame retardant and its effect on the poly(L-lactic acid) as the flame retardant material[J]. Polymer, 2021. DOI:10.1016/j.polymer.2021.124027.
[3] XIANG Yushu, GAO Yun, XU Guomin, et al. Thermal degradation behavior and flame retardant properties of PET/DiDOPO conjugated flame retardant compo-sites[J]. Frontiers in Chemistry, 2022. DOI:10.3389/fchem.2022.1018998.
[4] LI Ping, DANG Li, LI Yawei, et al. Enhanced flame-retardant and mechanical properties of epoxy resin by combination with layered double hydroxide, Mg2B2O5 whisker, and dodecyl dihydrogen phosphate[J]. Materials & Design, 2022. DOI: 10.1016/j.matdes.2022.110608.
[5] WANG Feiyue, LIAO Jiahao, YAN Long, et al. Fabrication of diaminodiphenylmethane modified ammonium polyphosphate to remarkably reduce the fire hazard of epoxy resins[J]. Polymers, 2021. DOI: 10.3390/polym13193221.
[6] 高建伟, 王锐, 董振峰, 等. 磷氟协同阻燃PET的制备及性能研究[J]. 北京服装学院学报:自然科学版, 2019, 39(2): 1-9.
GAO Jianwei, WANG Rui, DONG Zhenfeng, et al. Preparation and properties of PET with synergistic flame retardant containing phosphorus and fluoride[J]. Journal of Beijing Institute of Fashion Techno-logy(Natural Science Edition), 2019, 39(2): 1-9.
[7] LIU Ke, LI Yuanyuan, TAO Lei, et al. Preparation and characterization of polyamide 6 fibre based on a phosphorus-containing flame retardant[J]. RSC Advances, 2018, 8(17): 9261-9271.
[8] LU Peng, ZHAO Zeyong, XU Boren, et al. A novel inherently flame-retardant thermoplastic polyamide elastomer[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2019.122278.
[9] CHEN Xiaodong, ZHANG Chi, SONG Guangling, et al. Electrochemical activity and damage of single carbon fiber[J]. Materials, 2021. DOI: 10.3390/ma14071758.
[10] NAIK Vaibhav M, BHOSALE Sheshanath V, KOLEKAR Govind B. A brief review on the synthesis, characterisation and analytical applications of nitrogen doped carbon dots[J]. Analytical Methods, 2022, 14(9): 877-891.
[11] ZHANG Zengting, YI Guiyun, LI Peng, et al. A minireview on doped carbon dots for photocatalytic and electrocatalytic applications[J]. Nanoscale, 2020, 12(26): 13899-13906.
doi: 10.1039/d0nr03163a pmid: 32597441
[12] MUTUYIMANA Felicte Pacifique, LIU Juanjuan, NSANZAMAHORO Stanislas, et al. Yellow-emissive carbon dots as a fluorescent probe for chrom-ium(VI)[J]. Mikrochimica Acta, 2019. DOI: 10.1007/s00604-019-3284-1.
[13] LI Junzhi, LIU Jianhua, XU Liqun, et al. Preparation of thermoresponsive fluorescent carbon dots for cellular imaging[J]. Polymer International, 2017, 66(1): 92-97.
[14] CHEN Binbin, LIU Mengli, GAO Yating, et al. Design and applications of carbon dots-based ratiometric fluorescent probes: a review[J]. Nano Research, 2022, 16: 1064-1083.
[15] XIA Chunlei, ZHU Shoujun, FENG Tanglue, et al. Evolution and synthesis of carbon dots: from carbon dots to carbonized polymer dots[J]. Advanced Science, 2019. DOI: 10.1002/advs.201901316.
[16] ZHANG Shiwang, ZHANG Liangxing, HUANG Linsen, et al. Study on the fluorescence properties of carbon dots prepared via combustion process[J]. Journal of Luminescence, 2019, 206: 608-612.
doi: 10.1016/j.jlumin.2018.10.086
[17] LIU Junjun, LI Rui, YANG Bai. Carbon dots: a new type of carbon-based nanomaterial with wide applica-tions[J]. ACS Central Science, 2020, 6(12): 2179-2195.
doi: 10.1021/acscentsci.0c01306 pmid: 33376780
[18] ARCHITHA Natarajan, RAGUPATHI Murugesan, SHOBANA Chellappan, et al. Microwave-assisted green synthesis of fluorescent carbon quantum dots from Mexican Mint extract for Fe3+ detection and bio-imaging applications[J]. Environmental Research, 2021. DOI: 10.1016/j.envres.2021.111263.
[19] WANG Jing, LI Qilong, ZHOU Jinge, et al. Synthesis, characterization and cells and tissues imaging of carbon quantum dots[J]. Optical Materials, 2017, 72: 15-19.
[20] ZHANG Susu, YUAN Li, LIANG Guozheng, et al. Preparation of multicolor-emissive carbon dots with high quantum yields and their epoxy composites for fluorescence anti-counterfeiting and light-emitting devices[J]. Journal of Materials Chemistry C: Materials for Optical and Electronic Devices, 2022, 10(21): 8441-8458.
[21] ALI Haydar, GHOSH Santu, JANA Nikhil Ranjan. Fluorescent carbon dots as intracellular imaging probes[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2020. DOI: 10.1002/wnan.1617.
[22] JIN Jianchen, YU Yue, YAN Ren, et al. N,S-codoped carbon dots with red fluorescence and their cellular imaging[J]. ACS Applied Bio Materials, 2021, 4(6): 4973-4981.
doi: 10.1021/acsabm.1c00242 pmid: 35007045
[23] ANJANA R R, ANJALI Devi J S, JAYASREE Contact M, et al. N-doped carbon dots as a fluorescent probe for bilirubin[J]. Microchimica Acta, 2017. DOI: 10.1007/s00604-017-2574-8.
[24] KIM Tak H, WHITE Alan R, SIRDAARTA Joseph P, et al. Yellow-emitting carbon nanodots and their flexible and transparent films for white LEDs[J]. ACS Applied Materials Interfaces, 2016, 8(48): 33102-33111.
[25] YUAN Fanglong, YUAN Ting, SUI Laizhi, et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs[J]. Nature Communications, 2018. DOI: 10.1038/s41467-018-04635-5.
[26] ZHANG Yuecheng, LI Chengjia, SUN Lingbo, et al. Defects coordination triggers red-shifted photoluminescence in carbon dots and their application in ratiometric Cr(VI) sensing[J]. Microchemical Journal, 2021. DOI: 10.1016/j.microc.2021.106552.
[27] WU Xiaoming, LI Yanan, YANG Shaoxiang, et al. Discriminative detection of mercury (II) and hydrazine using a dual-function fluorescent probe[J]. Luminescence, 2020, 35(5): 754-762.
doi: 10.1002/bio.3781 pmid: 31999894
[28] LIU Chang, LI Hongying, CHENG Rui, et al. Facile synthesis, high fluorescence and flame retardancy of carbon dots[J]. Journal of Materials Science & Technology, 2022, 104: 163-171.
[29] XUE Baoxia, SHI Yiran, ZHANG Chunyan, et al. Construction of a P-N-Si flame retardant coating on the cotton fabric with the integration of biomass carbon dots and ammonium polyphosphate[J]. Cellulose, 2022, 29, 9469-9486.
[30] 顾伟文, 王文庆, 魏丽菲, 等. 碳点对阻燃聚对苯二甲酸乙二醇酯性能的影响[J]. 纺织学报, 2021, 42(7): 1-10.
GU Weiwen, WANG Wenqing, WEI Lifei, et al. Influnce of carbon dots on properties of flame retardant poly(ethylene terephthalate)[J]. Journal of Textile Research, 2021, 42(7): 1-10.
[31] GU Weiwen, DONG Zhenfeng, ZHANG Anying, et al. Functionalization of PET with carbon dots as copolymerizable flame retardants for the excellent smoke suppressants and mechanical properties[J]. Polymer Degradation and Stability, 2022. DOI: 10.1016/j.polymdegradstab.2021.109766.
[32] RAHIMI Aghdam Taher, SHARIATINIA Zahra, HAKKARAINEN Minna, et al. Nitrogen and phosphorous doped graphene quantum dots: excellent flame retardants and smoke suppressants for polyacrylonitrile nanocomposites[J]. Journal of Hazardous Materials, 2020. DOI: 10.1016/j.jhazmat.2019.121013.
[33] DING Hui, ZHOU Xuanxuan, ZHANG Zihui, et al. Large scale synthesis of full-color emissive carbon dots from a single carbon source by a solvent-free method[J]. Nano Research, 2021, 15(4): 3548-3555.
[34] FANG Laiping, WU Minjian, HUANG Chushu, et al. Industrializable synthesis of narrow-dispersed carbon dots achieved by microwave-assisted selective carbonization of surfactants and their applications as fluorescent nano-additives[J]. Journal of Materials Chemistry A, 2020, 8(40): 21317-21326.
[35] LI Weidong, LIU Yuan, WANG Boyang, et al. Kilogram-scale synthesis of carbon quantum dots for hydrogen evolution, sensing and bioimaging[J]. Chinese Chemical Letters, 2019, 30(12): 2323-2327.
doi: 10.1016/j.cclet.2019.06.040
[36] WU Yuhang, MA Guocong, ZHANG Anying, et al. Preparation of carbon dots with ultrahigh fluorescence quantum yield based on PET waste[J]. ACS Omega, 2022, 7(42): 38037-38044.
doi: 10.1021/acsomega.2c05324 pmid: 36312408
[37] LI Jingli, LIANG Qianqian, LU Ai, et al. The crystallization behaviors of copolymeric flame-retardant poly(ethylene terephthalate) with organophos-phorus[J]. Polymer Composites, 2013, 34(6): 867-876.
[38] XUE Baoxia, NIU Mei, YANG Yongzhen, et al. Influence of graphitization degree of carbon microspheres on properties of PET flame retardant[J]. Polymer Engineering & Science, 2018, 58(8): 1399-1408.
[39] WANG Rui, WANG Wenqing, WANG Fanghe, et al. Construction of nano-multilayer coatings on copolyester fabrics using UV-grafting mediated layer-by-layer self-assembly for improved anti-droplet and flame retardent performance[J]. Polymer Degradation and Stability, 2021. DOI:10.1016/j.polymdegradstab.2020.109405.
[40] DIDANE Nizar, GIRAUD Stephane, DEVAUX Eric, et al. Thermal and fire resistance of fibrous materials made by PET containing flame retardant agents[J]. Polymer Degradation and Stability, 2012, 97(12): 2545-2551.
[41] AO Xiang, DU Ya, YU Dan, et al. Synthesis, characterization of a DOPO-based polymeric flame retardant and its application in polyethylene terephthalate[J]. Progress in Natural Science: Materials International, 2020, 30(2): 200-207.
[1] 袁野, 张安莹, 魏丽菲, 高建伟, 陈咏, 王锐. 含磷阻燃聚酯的合成动力学及其性能[J]. 纺织学报, 2024, 45(04): 50-58.
[2] 谢艳霞, 张唯强, 徐亚宁, 赵书涵, 尹雯萱, 张文强, 韩旭. 商用聚对苯二甲酸乙二醇酯短纤维中低聚物析出机制及影响因素[J]. 纺织学报, 2024, 45(01): 65-73.
[3] 姚晨曦, 万爱兰. 聚对苯二甲酸丁二醇酯/聚对苯二甲酸乙二醇酯纬编运动T恤面料的热湿舒适性[J]. 纺织学报, 2024, 45(01): 90-98.
[4] 肖云超, 杨雅茹, 郭健鑫, 王童谣, 田强. 高温自交联抗熔滴阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2023, 44(11): 151-159.
[5] 谭晶, 石鑫, 于景超, 程礼盛, 杨涛, 杨卫民. 聚合物热解制备玻璃纤维表面碳纳米涂层及其导电性[J]. 纺织学报, 2023, 44(11): 36-44.
[6] 孟鑫, 朱淑芳, 徐英俊, 闫旭. 用于纸质文档保护的原位静电纺废旧聚对苯二甲酸乙二醇酯膜[J]. 纺织学报, 2023, 44(09): 20-26.
[7] 庞明科, 王淑花, 史晟, 薛立钟, 郭红, 高承永, 卢建军, 赵晓婉, 王子涵. 废旧聚对苯二甲酸乙二醇酯纤维醇解制备阻燃水性聚氨酯及其应用[J]. 纺织学报, 2023, 44(02): 214-221.
[8] 廖云珍, 朱亚楠, 葛明桥, 孙同明, 张欣宇. 聚对苯二甲酸乙二醇酯/SrAl2O4:Eu2+,Dy3+含杂纤维醇解及其回收产物性能[J]. 纺织学报, 2023, 44(02): 44-54.
[9] 任嘉玮, 张圣明, 吉鹏, 王朝生, 王华平. 磷硅改性阻燃抑熔滴聚酯纤维的制备及其性能[J]. 纺织学报, 2023, 44(02): 1-10.
[10] 李宝洁, 朱元昭, 钟毅, 徐红, 毛志平. 聚磷腈改性沸石咪唑酯骨架材料的制备及其在聚酯阻燃中的应用[J]. 纺织学报, 2022, 43(11): 104-112.
[11] 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100.
[12] 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39.
[13] 李平阳, 付灿, 董玲玲. 阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2022, 43(06): 107-114.
[14] 黄益婷, 程献伟, 关晋平, 陈国强. 磷/氮阻燃剂对涤纶/棉混纺织物的阻燃整理[J]. 纺织学报, 2022, 43(06): 94-99.
[15] 徐晓彤, 江振林, 郑钦超, 朱科宇, 王朝生, 柯福佑. 导热结构对聚对苯二甲酸乙二醇酯非等温结晶行为的影响[J]. 纺织学报, 2022, 43(03): 44-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!