纺织学报 ›› 2024, Vol. 45 ›› Issue (03): 177-184.doi: 10.13475/j.fzxb.20221102401

• 机械与设备 • 上一篇    下一篇

精梳机分离罗拉齿轮传动机构优化

刘金儒1,2, 李新荣1,2(), 王建坤3, 王浩3, 师帅星1,2, 王彪1,2   

  1. 1.天津工业大学 机械工程学院, 天津 300387
    2.天津市现代机电装备技术重点实验室, 天津 300387
    3.天津工业大学 纺织科学与工程学院, 天津 300387
  • 收稿日期:2022-11-07 修回日期:2023-03-29 出版日期:2024-03-15 发布日期:2024-04-15
  • 通讯作者: 李新荣
  • 作者简介:刘金儒(1997—),男,硕士生。主要研究方向为新型纺织机械设计及自动化。
  • 基金资助:
    天津市131创新型人才团队项目(201916)

Optimization of gear transmission mechanism of detaching roller for comber

LIU Jinru1,2, LI Xinrong1,2(), WANG Jiankun3, WANG Hao3, SHI Shuaixing1,2, WANG Biao1,2   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2. Tianjin Key Laboratory of Advanced Mechatronics Equipment Technology, Tianjin 300387, China
    3. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2022-11-07 Revised:2023-03-29 Published:2024-03-15 Online:2024-04-15
  • Contact: LI Xinrong

摘要:

混合驱动的精梳机分离罗拉齿轮传动机构的动力学性能直接影响车速的提高,为改善传动机构的动力学性能,首先,分析现有混合驱动的精梳机分离罗拉齿轮传动机构,采用集中质量法建立传动机构的固有频率模型,并计算传动机构在不同精梳机车速下的激励频率,发现当车速为600 钳次/min时机构会出现共振;然后,采用导数法建立传动机构固有频率对机构中各个构件转动惯量的灵敏度模型,发现行星轮p的转动惯量对一阶固有频率的影响较大;最后,通过优化传动机构中WW型差动轮系的各个齿轮齿数以改变其转动惯量,使传动机构的一阶固有频率比原先提高了43.44%,避免了机构在600 钳次/min时出现共振。

关键词: 精梳机, 分离罗拉, 混合驱动, 齿轮传动机构

Abstract:

Objective With the increase of combing speed, the internal excitation frequencies of the hybrid-driven gear transmission mechanism of the comber detaching roller will increase. When it approaches the natural frequencies of the transmission mechanism, the mechanism will have resonance, causing damage to some components. Therefore, in order to master the dynamic performance of the transmission mechanism and avoid resonance, it is necessary to study the influence of the change of mechanism parameters on the inherent characteristics and then optimize the design of the transmission mechanism.

Method A hybrid-driven gear transmission mechanism of the comber detaching roller was designed. The lumped-mass method was adopted to establish the natural frequency model of the transmission mechanism, and the excitation frequencies of the transmission mechanism at different comber speeds were calculated. Then, the sensitivity model of the natural frequency of the transmission mechanism to moment of inertias was obtained by derivative method. Finally, by optimizing the number of teeth of each gear in WW differential gear train of the transmission mechanism to change the moment of inertia, the first order natural frequency was increased.

Results The natural frequencies of the transmission mechanism were divided into two types according to the number of multiple roots: single root frequency and N-1 multiple root frequency. With the increase of the number of double planetary gears, the single root frequencies changed, while the N-1 multiple root frequencies were independent of the number of double planetary gears. When the speed of the combing locomotive was 300, 400 and 500 nips/min, the internal excitation frequency of the transmission mechanism did not intersect with the natural frequency, and the mechanism operated normally without resonance. However, when the speed of the combing machine was increased to 600 nips/min, the meshing frequency of the gear pair c-d intersected the first order natural frequency (points A and B), and the mechanism may resonate at these two points. Then, the first order natural frequency decreases with the increase of the moment of inertia of each component. Among them, the first order natural frequency showed the highest sensitivity to the moment of inertia of planetary gear p, and was almost insensitive to the moment of inertia of planetary carrier h and gear b. With the increase of the rotational inertia of planetary gears p and q, the first order natural frequency was decreased rapidly at the initial stage and then decreases gently. With the increase of the rotational inertia of sun gear s and a, the first order natural frequency was decreased gradually with almost constant slope. After parameter optimization, the first natural frequency of the transmission mechanism became 1 259.28 Hz, 43.44% higher than the original, which would avoid the intersection of the internal excitation frequency and the natural frequency of the mechanism when the combing locomotive speed was raised to 600 nips/min, ensuring that the transmission mechanism operates normally without resonance.

Conclusion The method of concentrated mass is adopted to establish the natural frequency model of the hybrid-driven gear transmission mechanism of the comber detaching roller. The relationship between the natural frequency and the excitation frequency of the transmission mechanism under different comber speeds are calculated, and the number of teeth of each gear of WW differential gear train in the transmission mechanism is optimized according to the sensitivity analysis. Further experiments will be carried out in the future to promote the progress of combers.

Key words: comber, detaching roller, hybrid-driven, gear transmission mechanism

中图分类号: 

  • TS112.2

图1

混合驱动的精梳机分离罗拉齿轮传动机构的结构"

表1

混合驱动的精梳机分离罗拉齿轮传动机构中 各构件的基本参数"

构件 齿数
z
模数
M/mm
质量
m/kg
齿宽
b/mm
压力角/
(°)
太阳轮s 39 2.5 1.48 35.0 20
行星轮pi 21 2.5 0.44 34.5 20
行星轮qi 28 2.5 0.49 34.5 20
太阳轮a 32 2.5 1.13 35.0 20
行星架h 95 2.5 13.15 40.0 20
齿轮b 80 2.5 9.30 40.0 20
齿轮c 87 1.25 2.51 30.0 20
齿轮d 28 1.25 0.14 30.0 20

图2

混合驱动的精梳机分离罗拉齿轮传动机构动力学模型"

表2

不同双联行星轮数目下混合驱动的精梳机分离 罗拉齿轮传动机构的固有频率"

重根数l 固有频率/Hz
N=3 N=4 N=5
1 0 0 0
877.91 833.47 795.21
2 205.41 2 231.39 2 234.65
3 216.55 3 275.18 3 286.47
3 948.10 3 803.59 3 754.51
13 443.61 14 418.16 15 269.65
14 404.22 15 644.83 16 845.14
18 208.75 18 208.90 18 209.29
N-1 7 348.40 7 348.40 7 348.40
10 489.92 10 489.92 10 489.92

图3

精梳机不同车速下内部激励频率与固有频率的关系"

表3

固有频率对转动惯量的灵敏度"

构件 灵敏度/(s-1·kg-1·m-2)
行星架h -41.412
太阳轮s -21 057.834
行星轮pi -171 958.096
行星轮qi -132 705.041
太阳轮a -38 813.131
齿轮b -70.356
齿轮c -16 521.474
齿轮d -160 289.909

图4

转动惯量对固有频率的影响"

图5

参数优化后传动机构内部激励频率与 固有频率的关系"

[1] 任家智, 高卫东, 谢春萍, 等. 棉精梳机分离罗拉顺转定时对棉网均匀度的影响[J]. 纺织学报, 2014, 35(3): 127-131.
REN Jiazhi, GAO Weidong, XIE Chunping, et al. Influence of forward motion timing of comber detaching roller on evenness of cotton web[J]. Journal of Textile Research, 2014, 35(3): 127-131.
[2] 陈宇恒, 高卫东, 任家智. 精梳机分离牵伸力在线检测与规律分析[J]. 纺织学报, 2022, 43(8): 1-6.
CHEN Yuheng, GAO Weidong, REN Jiazhi. On-line detection and pattern analysis of separation drafting force in comber[J]. Journal of Textile Research, 2022, 43(8): 1-6.
doi: 10.1177/004051757304300101
[3] 贾国欣, 任毅, 李留涛. 精梳机分离罗拉连杆传动机构的减振平衡优化[J]. 棉纺织技术, 2015, 43(8): 17-21.
JIA Guoxin, REN Yi, LI Liutao. Vibration damping balance optimization of comber detaching roller rod transmission mechanism[J]. Cotton Textile Technology, 2015, 43(8): 17-21.
[4] 李留涛, 贾国欣, 任家智. 精梳机分离罗拉传动机构的平衡优化[J]. 纺织学报, 2015, 36(8): 133-138.
LI Liutao, JIA Guoxin, REN Jiazhi. Balance optimization based on detaching roller transmission mechanism of combing machine[J]. Journal of Textile Research, 2015, 36(8): 133-138.
[5] LI X R, JIANG X M, WANG S Z, et al. Driving mechanism of cotton comber's detaching roller based on time-sharing unidirectional drive[J]. Journal of Donghua University (English Edition), 2014, 31(4): 429-432.
[6] 刘立东, 李新荣, 杨海鹏, 等. 棉精梳机分离罗拉伺服驱动研究[J]. 纺织学报, 2020, 41(1): 158-164.
LIU Lidong, LI Xinrong, YANG Haipeng, et al. Research on servo drive of detaching roller of cotton combing machines[J]. Journal of Textile Research, 2020, 41(1): 158-164.
doi: 10.1177/004051757104100212
[7] KAHRAMAN A. Natural modes of planetary gear trains[J]. Journal of Sound and Vibration, 1994, 173(1): 125-130.
doi: 10.1006/jsvi.1994.1222
[8] LIN J, PARKER R G. Sensitivity of planetary gear natural frequencies and vibration modes to model parameters[J]. Journal of Sound and Vibration, 1999, 228(1): 109-128.
doi: 10.1006/jsvi.1999.2398
[9] 张俊, 刘先增, 焦阳, 等. 基于刚柔耦合模型的行星传动固有特性分析[J]. 机械工程学报, 2014, 50(15): 104-112.
ZHANG Jun, LIU Xianzeng, JIAO Yang, et al. Vibration analysis of planetary gear trains based on a discrete-continuum dynamic model[J]. Journal of Mechanical Engineering, 2014, 50(15): 104-112.
[10] QIAN P Y, ZHANG Y L, CHENG G, et al. Model analysis and verification of 2K-H planetary gear system[J]. Journal of Vibration and Control, 2015, 21(10): 1946-1957.
doi: 10.1177/1077546313496575
[11] ZHANG A Q, WEI J, QIN D T, et al. Analytical coupling characterization of multi-stage planetary gear free vibration considering flexible structure[J]. Journal of Vibroengineering, 2017, 19(6): 3994-4008.
doi: 10.21595/jve
[12] ZHANG L, WANG Y, WU K, et al. Dynamic modeling and vibration characteristics of a two-stage closed-form planetary gear train[J]. Mechanism and Machine Theory, 2016, 97: 12-28.
doi: 10.1016/j.mechmachtheory.2015.10.006
[13] 李孝磊, 葛文庆, 汪学杞, 等. 全电直驱集成动力系统扭振固有特性灵敏度分析及动力学设计[J]. 科学技术与工程, 2020, 20(15): 6252-6259.
LI Xiaolei, GE Wenqing, WANG Xueqi, et al. Sensitivity analysis and dynamics design of natural characteristic torsional vibration of integrated electric power system[J]. Science Technology and Engineering, 2020, 20(15): 6252-6259.
[14] 窦作成, 李以农, 杜明刚, 等. 多档位行星变速传动系统动力学参数优化修改[J]. 振动与冲击, 2018, 37(4): 67-74, 159.
DOU Zuocheng, LI Yinong, DU Minggang, et al. Dynamic optimization and modification for the parameters of a multi-speed planetary transmission system[J]. Journal of Vibration and Shock, 2018, 37(4): 67-74, 159.
[15] 杨海鹏, 李新荣, 吕鹏飞, 等. 采用混合驱动的精梳机分离罗拉传动机构[J]. 纺织学报, 2019, 40(4): 122-128.
YANG Haipeng, LI Xinrong, LÜ Pengfei, et al. Detaching roller drive mechanism of a comber based on hybrid-driven[J]. Journal of Textile Research, 2019, 40(4): 122-128.
[16] LIN J, PARKER R G. Analytical characterization of the unique properties of planetary gear free vibration[J]. Journal of Vibration and Acoustics-Transactions of the ASME, 1999, 121(3): 316-321.
doi: 10.1115/1.2893982
[17] 王世宇, 宋轶民, 沈兆光, 等. 行星传动系统的固有特性及模态跃迁研究[J]. 振动工程学报, 2005(4): 412-417.
WANG Shiyu, SONG Yimin, SHEN Zhaoguang, et al. Research on natural characteristics and loci veering of planetary gear transmissions[J]. Journal of Vibration Engineering, 2005(4): 412-417.
[1] 刘金儒, 李新荣, 王浩, 师帅星. 棉精梳机分离罗拉混合驱动系统优化[J]. 纺织学报, 2023, 44(11): 190-198.
[2] 冯清国, 巫鳌飞, 任家智, 陈宇恒. 棉纺精梳机分离罗拉连杆驱动机构动力学仿真及有限元分析[J]. 纺织学报, 2023, 44(09): 197-204.
[3] 陈宇恒, 高卫东, 任家智. 精梳机分离牵伸力在线检测与规律分析[J]. 纺织学报, 2022, 43(08): 1-6.
[4] 梁灼, 贾国欣, 任家智, 李金键. 棉纺精梳机钳板的变形及其应力分析[J]. 纺织学报, 2021, 42(12): 145-150.
[5] 李金键, 任家智, 梁灼, 贾国欣. 棉纺精梳机钳板摆轴的动力学分析[J]. 纺织学报, 2021, 42(06): 160-165.
[6] 刘立东, 李新荣, 杨海鹏, 卜兆宁. 棉精梳机分离罗拉伺服驱动研究[J]. 纺织学报, 2020, 41(01): 158-164.
[7] 杨海鹏, 李新荣, 吕鹏飞, 王振宇. 采用混合驱动的精梳机分离罗拉传动机构[J]. 纺织学报, 2019, 40(04): 122-128.
[8] 李留涛 贾国欣 任家智. 精梳机分离罗拉传动机构的平衡优化[J]. 纺织学报, 2015, 36(08): 133-138.
[9] 王晓维 周国庆 李新荣. 棉精梳机钳板开闭口时间的研究[J]. 纺织学报, 2015, 36(07): 121-125.
[10] 任家智 高卫东 谢春萍 陈宇恒. 棉精梳机分离罗拉顺转定时对棉网均匀度的影响[J]. 纺织学报, 2014, 35(3): 127-0.
[11] 任家智 马驰 张一风 冯清国. 高速节能精梳技术的研究与应用[J]. 纺织学报, 2013, 34(2): 141-145.
[12] 毛立民 谢征恒 李兆旗 侯春杰. 一种全新概念的并行梳理精梳机[J]. 纺织学报, 2013, 34(12): 113-0.
[13] 马庆红;徐伯俊;王晓旭;吴碧云;徐劲. 基于ADAMS的精梳机中间轴系统的动平衡优化[J]. 纺织学报, 2010, 31(10): 121-123.
[14] 严广松;林 倩;任家智;郁崇文. 基于棉纤维长度根数分布的精梳机梳理效能分析[J]. 纺织学报, 2009, 30(05): 20-24.
[15] 周国庆;杨建成;蒋秀明;宋春梅;冯广轩;刘敦平;申卫国;王宇. 粗纱锭翼性能参数智能化测试系统[J]. 纺织学报, 2008, 29(2): 94-97.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!