纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 149-154.doi: 10.13475/j.fzxb.20221102601

• 服装工程 • 上一篇    下一篇

服装褶皱形态的参数化表征方法

王一品1, 李小辉1,2()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
  • 收稿日期:2022-12-08 修回日期:2023-12-06 出版日期:2024-06-15 发布日期:2024-06-15
  • 通讯作者: 李小辉(1982—),男,副教授,博士。主要研究方向为功能防护服装与结构设计。E-mail: lxh@dhu.edu.cn
  • 作者简介:王一品(1998—),女,硕士生。主要研究方向为服装结构设计。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(2232022G-08)

Parametric characterization method of clothing fold morphology

WANG Yipin1, LI Xiaohui1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2022-12-08 Revised:2023-12-06 Published:2024-06-15 Online:2024-06-15

摘要:

在服装结构设计趋向智能化与自动化的背景下,褶皱形态的量化表征存在种类繁杂、影响因素多等问题。通过分析服装褶皱形成的影响因素,提出基于款式特征参数的褶皱形态量化表征方法,建立服装褶皱形态二维平面款式与三维结构间的映射关系。选取了比较典型的6种褶皱形态,制作了5款裙装,在满足同一面料、裙长、纱线方向及观察视角的条件下,进行14个款式特征参数量化估计值与测量值对照实验,得到22组实验数据。结果表明,本文方法能有效约束和描述不同褶皱类型,且量化估计值与测量值在95%的置信区间下具有显著相关性。该量化方法直观准确,灵活高效,具有普遍适用性和工程实用性,能有效地实现服装褶皱形态的量化表征。

关键词: 服装褶皱, 褶皱形态, 参数化表征, 结构设计, 智能制版, 服装工程

Abstract:

Objective In the context of intelligent and automated clothing structure design, there are many problems in the quantitative representation of fold morphology, such as a wide variety and a lot influencing factors. In order to solve this problem, this paper proposes a parametric characterization method for clothing fold morphologies, and establishes the mapping relationship between its two-dimensional plane style and three-dimensional structure, so as to realize the automatic generation of fold personalized patterns.

Method The parametric theory was used and a series of parameter values were set. Relevant parameters were adopted to constrain and describe the structural dimensions of geometry. By combining the structural drawing principle of folds and the relationship between internal fold structures, 14 characteristic parameters that can quantify the fold morphology were proposed. Five skirts of the same fabric were prepared as experimental samples, including a total of six common pleated styles. There were 22 sets of experiments designed from these 5 samples. In the experiment, physical photos of clothing folds were taken under the same angle of view and the same plane. Then the photos were subjected to image processing for feature parameter extraction.

Results From the quantification results of the fold images of specimen A-E, it can be seen that each fold in the sample can be decomposed into multiple single folds of different sizes and orientations to characterize. These folds can be quantified with the extracted 14 characteristic parameters and 11 representative folds were extracted from five specimens. Estimates of the parameters in these folds were found. Then the data were compared with their actual measurements. SPSS were utilized to pair estimates and measurements for different types of folds. The results show that the folds, which quantified by this method, has a significant correlation between the estimated and measured values used for testing. At the same time, no significant difference exists between the estimated and measured values of the folds at the 95% confidence interval, indicating that the folds estimated and measured values are relatively close, and this method has a certain accuracy.

Conclusion After studying the quantification ability of different characteristic parameters on folds and conducting related experiments, the results show that each characteristic parameter extracted in this paper has practical application value. At the same time, this method has high accuracy. No significant difference exists between the experimental verification data and the data read by the tester. This method is more systematic. It quantifies and characterizes various factors affecting fold morphology through mathematical means, which can realize the systematic and non-subjective evaluation of fold morphological characteristics. This method is flexible and has good quantification capabilities for a variety of different types of folds. The fold parameterization method proposed in this paper can effectively realize the quantitative characterization of clothing fold morphology. It has practical application and feasibility in the parameter acquisition and style recognition of clothing intelligent plate making, which provides a new research idea for the intelligent development of clothing engineering.

Key words: clothing fold, fold morphology, parameterization, structural design, intelligent plate making, clothing engineering

中图分类号: 

  • TS941.26

图1

褶皱参数化设计"

表1

褶皱特征参数的定义"

参数 名称 单位 含义
la 上边口长 cm 褶皱所在织物的上边口线长度
lb 下边口长 cm 褶皱所在织物的下边口线长度
hg 褶身长 cm 褶皱上下两端之间的垂直距离
hw 褶身宽 cm 褶皱上下两端之间的水平距离
lU 上褶面 cm 褶皱上端露在上面的平面部分
lU' 下褶面 cm 褶皱下端露在上面的平面部分
lO 上褶里 cm 褶皱上端不可见的重叠平面部分
lO' 下褶里 cm 褶皱下端不可见的重叠平面部分
la' 上褶底 cm 褶皱上端被遮挡的底面织物部分
lb' 下褶底 cm 褶皱下端被遮挡的底面织物部分
ha 明褶脊长 cm 褶面与褶里所在平面相交线长度
θa 明褶脊倾角 (°) 明褶脊线与垂直方向所成夹角的角度
hb 暗褶脊长 cm 褶底与褶里所在平面相交线长度
θb 暗褶脊倾角 (°) 暗褶脊线与垂直方向所成夹角的角度

图2

褶皱的变化形式"

图3

处理前后的暗褶图像"

图4

量化处理后的褶皱图像"

表2

褶皱特征参数的估值与实际测量结果对比(部分)"

参数 顺褶Fa1 暗褶Fb1 明褶Fc1 抽褶Fd12 波浪Fd4 垂坠褶Fe1
估计值 测量值 估计值 测量值 估计值 测量值 估计值 测量值 估计值 测量值 估计值 测量值
la /cm 22.0 21.5 20.0 19.9 20.0 19.6 27.0 27.5 0.0 0.0 21.0 20.7
lb /cm 40.0 41.0 35.0 37.3 40.0 39.8 60.0 60.3 110.0 108.4 0.0 0.0
hg /cm 33.0 32.6 0.0 0.0 0.0 0.0 22.0 22.0 0.0 0.0 0.0 0.0
hw /cm 2.0 1.8 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0
lU /cm 3.0 3.0 12.0 11.7 6.0 6.0 11.0 10.7 0.0 0.0 5.0 4.8
lU' /cm 7.0 6.5 18.0 19.2 11.0 12.2 17.0 15.8 8.0 9.0 0.0 0.0
lO /cm 3.0 3.0 3.0 2.6 3.0 3.0 1.0 0.8 0.0 0.0 4.0 3.8
lO'/cm 2.0 2.2 0.0 0.0 0.0 0.0 2.0 1.8 2.0 2.0 0.0 0.0
la'/cm 7.0 7.7 12.0 11.7 9.0 8.5 10.0 11.4 0.0 0.0 5.0 4.8
lb'/cm 7.0 7.4 0.0 0.0 15.0 15.9 25.0 26.0 65.0 62.9 0.0 0.0
ha /cm 33.0 33.0 20.0 20.3 33.0 31.3 22.0 22.0 13.0 12.9 39.0 37.1
θa /(°) 357.0 357.0 355.0 354.5 355.0 355.3 355.0 355.4 2.0 1.5 332.0 331.5
hb /cm 33.0 31.2 20.0 20.7 33.0 31.5 22.0 22.2 11.0 11.0 40.0 39.6
θb /(°) 352.0 352.5 2.0 1.5 350.0 351.3 2.0 1.5 357.0 357.0 330.0 331.3
[1] 岳文侠, 曹革蕾. 服装结构设计中褶裥的应用及拓展[J]. 国际纺织导报, 2022, 50(4): 36-44.
YUE Wenxia, CAO Gelei. Application and extension of pleats in garment structure design[J]. Melliand China, 2022, 50(4): 36-44.
[2] 张茜. 基于梭织服装褶裥的针织服装褶裥工艺设计[J]. 针织工业, 2020(11): 55-59.
ZHANG Qian. Design of pleats for knitted garments based on pleats of woven garments[J]. Knitting Industries, 2020(11): 55-59.
[3] 柏昕, 杨小红. 服装立体褶裥的影响因素研究[J]. 设计艺术研究, 2012, 2(6): 65-70,83.
BAI Xin, YANG Xiaohong. Study on influencing factors of clothing stereogram[J]. Design Art Research, 2012, 2(6): 65-70,83.
[4] 张文斌, 庹武, 庄辉. 基于立体构成技术的抽褶造型与织物的相关性研究[J]. 东华大学学报(自然科学版), 2006, 32(3): 70-74.
ZHANG Wenbin, YU Wu, ZHUANG Hui. Research on the correlation between pleated modeling and fabric based on three-dimensional composition technology[J]. Journal of Donghua University (Natural Science), 2006, 32(3): 70-74.
[5] EMMANUEL T, JAMIE W, LAURENCE B, et al. A sketch-based interface for clothing virtual chara-cters[J]. IEEE Computer Graphics and Applications, 2007(1): 72-81.
[6] KIM S, KYU PARK C,. Basic garment pattern generation using geometric modeling method[J]. International Journal of Clothing Science and Technology, 2007, 19(1): 7-17.
[7] MINCHEN L, SHEFFER A, GRINSPUN E, et al. Foldsketch: enriching garments with physically reproducible folds[J]. ACM Transactions on Graphics, 2018, 37(4): 1-13.
[8] 刘瑞鑫, 李立轻, 汪军. 基于光度立体视觉的织物褶裥等级评定[J]. 东华大学学报(自然科学版), 2013, 39(1): 48-52,59.
LIU Ruixin, LI Liqing, WANG Jun. Grade evaluation of fabric pleats based on photometric stereo vision[J]. Journal of Donghua University (Natural Science), 2013, 39(1): 48-52,59.
[9] 方苏, 刘成霞, 周澳. 采用激光测量技术客观评价织物褶裥等级[J]. 丝绸, 2018, 55(6): 19-24.
FANG Su, LIU Chengxia, ZHOU Ao. Objective evaluation of fabric pleat grade by laser measurement technology[J]. Journal of Silk, 2018, 55(6): 19-24.
[10] 肖平, 钱伯丹, 鲁虹, 等. 服装缝纫平整度的研究进展[J]. 纺织学报, 2019, 40(11): 182-188.
doi: 10.13475/j.fzxb.20181201407
XIAO Ping, QIAN Bodan, LU Hong, et al. Research progress on sewing flatness of garments[J]. Journal of Textile Research, 2019, 40(11): 182-188.
doi: 10.13475/j.fzxb.20181201407
[11] 张伶俐, 张皋鹏. 应用MatLab的服装纸样参数化平面制版[J]. 纺织学报, 2019, 40(1): 130-135.
ZHANG Lingli, ZHANG Gaopeng. Parametric flat pattern design for clothing based on MatLab[J]. Journal of Textile Research, 2019, 40(1): 130-135.
[12] 李君. 女装结构设计中褶裥的变化与应用研究[D]. 长沙: 湖南师范大学, 2017: 80.
LI Jun. The application research of cross modelling in ladies' dresses design[D]. Changsha: Hunan Normal University, 2017: 80.
[1] 王遵钦, 刘东炎, 王晓旭, 张典堂. 机织角联锁变密度复合材料的面外压缩力学特性[J]. 纺织学报, 2024, 45(07): 63-71.
[2] 董智佳, 郭燕雨秋, 刘海桑, 姚思宏. 经编全成形镂空紧身衣的结构设计与实现[J]. 纺织学报, 2023, 44(12): 130-137.
[3] 王予涛, 丛洪莲, 顾洪阳. 纬编成形护膝结构设计及其热湿舒适性[J]. 纺织学报, 2023, 44(10): 68-74.
[4] 李皎, 陈利, 姚天磊, 陈小明. 类回转预制体针刺机器人系统设计[J]. 纺织学报, 2023, 44(07): 207-213.
[5] 吕钧炜, 罗龙波, 刘向阳. 基于直接氟化技术的芳纶表/界面结构设计与制备研究进展[J]. 纺织学报, 2023, 44(06): 21-27.
[6] 周赳, 胡伊丽. 等经浮长的三纬组合全显结构设计与应用[J]. 纺织学报, 2023, 44(06): 78-84.
[7] 陈弈菲, 刘驰, 杨萌. 基于响应曲面分析的连体泳装结构情绪测量[J]. 纺织学报, 2022, 43(10): 161-168.
[8] 徐铭涛, 嵇宇, 仲越, 张岩, 王萍, 眭建华, 李媛媛. 碳纤维/环氧树脂基复合材料增韧改性研究进展[J]. 纺织学报, 2022, 43(09): 203-210.
[9] 鲁虹, 宋佳怡, 李圆圆, 滕峻峰. 基于合体两片袖的内旋造型结构设计[J]. 纺织学报, 2022, 43(08): 140-146.
[10] 董智佳, 孙菲, 丛洪莲, 俞旭良. 低损耗纬编成形女士背心的结构设计与建模[J]. 纺织学报, 2022, 43(07): 129-134.
[11] 雷鸽, 李小辉. 数字化服装结构设计技术的研究进展[J]. 纺织学报, 2022, 43(04): 203-209.
[12] 陆爽怿, 周赳. 单经双纬组合全显色提花织物的结构交织平衡特征[J]. 纺织学报, 2021, 42(09): 59-65.
[13] 柯莹, 张海棠, 朱晓涵, 王宏付, 王敏. 电加热高空清洁作业服研制与性能评价[J]. 纺织学报, 2021, 42(08): 149-155.
[14] 王伟荣, 丛洪莲. 基于下肢运动特征的纬编无缝瑜伽裤结构设计[J]. 纺织学报, 2021, 42(06): 140-145.
[15] 苏梦茹, 邹婷, 陈颀超, 李超婧, 王富军, 王璐. 医用倒刺缝合线的研究进展[J]. 纺织学报, 2021, 42(05): 178-184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!