纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 161-167.doi: 10.13475/j.fzxb.20221102701

• 服装工程 • 上一篇    下一篇

面料拉伸性能与运动文胸防震功能的定量关系

盛欣洋, 陈晓娜(), 卢娅娅, 李艳梅, 孙光武   

  1. 上海工程技术大学 纺织服装学院, 上海 201620
  • 收稿日期:2022-12-08 修回日期:2023-09-27 出版日期:2024-01-15 发布日期:2024-03-14
  • 通讯作者: 陈晓娜(1984—),女,副教授,博士。主要研究方向为服装工效学与数字化。E-mail:chenxn@sues.edu.cn
  • 作者简介:盛欣洋(1998—),女,硕士生。主要研究方向为基于防震功能的运动文胸设计与评价。
  • 基金资助:
    国家自然科学基金项目(11802171)

Quantitative relationship between fabric elasticity and shock absorption performance of sports bras

SHENG Xinyang, CHEN Xiaona(), LU Yaya, LI Yanmei, SUN Guangwu   

  1. School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201620, China
  • Received:2022-12-08 Revised:2023-09-27 Published:2024-01-15 Online:2024-03-14

摘要:

为探究面料拉伸性能与运动文胸防震功能之间的定量关系,选取6种不同针织面料,先分别测量不同面料拉伸率为30%时的弹性模量来表征其拉伸性能,然后将这6种面料作为罩杯部分用料制作文胸,其它部位为同种面料。以运动假人为实验对象,在其表面选取7个位置粘贴标记点,采用三维人体动作捕捉系统,采集实验对象在模拟10 km/h跑步过程中各标记点的坐标变化,并计算出各点在局部坐标系下的相对位移。以运动过程中运动文胸对乳房竖直位移的减小作用来表征其防震功能,通过曲线拟合与模型筛选得出面料拉伸性能与文胸防震功能的定量关系。结果表明:6款罩杯面料动态最大拉伸率均值为30%,说明实验中用拉伸率为30%时的弹性模量表征面料的拉伸性能较为合理。罩杯面料弹性模量与乳房竖直位移间存在显著负相关,即面料弹性模量越大,乳房竖直位移越小,表明文胸防震功能越好;幂函数模型可作为以罩杯面料弹性模量预测75C实验对象10 km/h跑步运动时乳房竖直位移的首选模型。未来可通过测量罩杯与乳房之间的静动态压力及乳房-罩杯整体刚度探究罩杯面料拉伸性能对文胸防震功能的影响机制。

关键词: 运动文胸, 面料弹性模量, 防震功能, 乳房竖直位移, 曲线拟合, 运动假人

Abstract:

Objective Anti-shock performance of sports bras is closely related to the tensile properties of fabrics adopted to produce the sports bras, but seldom research was published on the qualitative and quantitative relationship between the two aspects. The aim of this study is to explore the quantitative relationship between the tensile properties of cup fabrics and the shock-absorbing performance of sports bras, and to provide data support for the optimization design of sports bras in the future. The study also aims to investigate the fabric stretching condition of sports bra during exercise.

Method Three coordinates of seven markers representing the trunk and breast movement were recorded with no bra and with six sports bras used. A dynamic mannequin with 75C-cup breasts was adopted to simulate the vertical breast movement at the running speed of 10 km/h. Six sports bras were produced with exactly the same structure, and the same materials except for the cup materials which were with different elasticity modulus in vertical direction. The quantitative relationship between elasticity modulus of cup materials and vertical breast displacement relative to trunk was fitted by ten curve-fit models. The static and dynamic stretch of cup materials were measured and calculated.

Results The mean maximum dynamic stretch of the six cup fabrics was (53.44±2.75) mm (rangeing from 50.63-58.55 mm). The mean maximum dynamic elongation of the six cup materials was 30.02% (ranging from 19.52% to 42.80%), implying that it is reasonable to select the elasticity modulus of 30% elongation as the index of cup fabrics. The vertical breast displacement under the no-bra condition was 21.84 mm, and the vertical breast displacement under the six bra conditions ranges from 9.69 mm to 19.76 mm. Pearson test result shows significant negative correlation (r=-0.886, P=0.019<0.05) between the elasticity modulus of cup materials and vertical breast displacement relative to trunk. Using vertical breast displacement under no-bra condition as the reference, less vertical breast displacement represents better shock absorption performance of a sports bra. The findings indicate that greater elastic modulus of cup fabrics induces better shock absorption performance of the bra, which may be resulted from greater stiffness of bra-breast unity relating to greater pressure at the interface of cup and breast exerted by cup fabrics. It was noted that the negative correlation between elastic modulus of cup fabrics and vertical breast displacement was nonlinear, and the vertical breast displacement decreased less as the elasticity modulus of cup materials increases. Eight of the ten curve fit models were screened by the significance of regression equations (P<0.05). The fitting degree (R2=0.891) of power function model was higher than that of other seven curve fit models, suggesting that power function can be adopted to predict the shock absorption performance of sports bras through the elasticity of cup materials. The quantitative relationship between the elasticity modulus of cup materials and vertical breast displacement can be expressed by the fitting equation lnB=-0.248lnE+ln64.289, where E represents the elasticity property modulus of cup fabrics and B represents vertical breast displacement of sports bra. The findings of this study also implied that it is feasible to employ the dynamic mannequin to evaluate performance and factors of the sports bras.

Conclusion The research showed that that 30% is a reasonable elongation to calculate the cup elasticity modulus when exploring the relationship between cup fabric and the performance of sports bra for women with 75C breasts when running at 10 km/h. The support performance of sports bras increases significantly as the elasticity modulus of cup fabrics increases. Power function can be adopted to predict the support performance of sports bras through cup elasticity modulus. For future research, the impacting mechanism of cup elastic properties on breast movement reduction should be explored by measuring the pressure exerted on the cup-breast interface and the stiffness of breast-cup unity.

Key words: sports bra elasticity modulus of fabric, shock absorption function, vertical breast displacement, curve fit, dynamic mannequin

中图分类号: 

  • TS941.17

表1

实验面料弹性模量测量结果"

面料
编号
工艺
类别
面料
组织
成分(含量) 面密度/
(g·m-2)
测试
方向
不同伸长率下弹性模量/(N·m-2)
伸长率20% 伸长率30% 伸长率40%
1 纬编 纬平针 锦纶/氨纶(75/25) 210 线圈纵行方向 333.4 400.1 504.2
线圈横列方向 248.5 256.6 269.2
2 纬编 罗纹 涤纶/氨纶(80/20) 250 线圈纵行方向 233.0 250.4 286.3
线圈横列方向 177.3 187.3 206.8
3 纬编 纬平针 锦纶/氨纶(87/13) 290 线圈纵行方向 408.8 511.5 645.8
线圈横列方向 240.1 239.6 249.2
4 纬编 纬平针 锦纶/氨纶(92/8) 240 线圈纵行方向 240.3 318.1 449.3
线圈横列方向 103.2 113.8 122.5
5 经编 纬平针 涤纶/氨纶(90/10) 250 线圈纵行方向 491.1 567.5 680.9
线圈横列方向 1 826.0 1 838.8 1 953.2

图1

实验文胸"

表2

样衣罩杯部分竖直方向弹性模量"

样衣编号 面料编号 方向 弹性模量/(N·m-2)
1# 4 线圈横列方向 113.8
2# 2 线圈纵列方向 187.3
3# 4 线圈横列方向 318.1
4# 1 线圈横列方向 400.1
5# 3 线圈横列方向 511.5
6# 5 线圈纵列方向 1 838.8

图2

运动假人的动力系统和模拟模型"

图3

标记点示意图"

图4

运动文胸实物图"

表3

穿着不同样衣时标记点M3与M7间最大拉伸均值"

样衣
编号
动态最大拉伸距离
dmax /mm
静态拉伸距离
d/mm
原长l0/
mm
最大伸长率
S/%
1# 58.55 50 41 42.80
2# 53.91 50 43 25.37
3# 50.63 50 38 33.23
4# 51.69 50 41 26.07
5# 53.25 50 40 33.13
6# 52.59 50 44 19.52
平均值±
标准差
53.44±2.76 50 41±2 30.02

表4

穿着不同样衣时乳房竖直位移均值"

样衣编号 乳房竖直位移/mm
1# 19.76±1.66
2# 16.63±0.50
3# 17.06±1.16
4# 13.40±0.71
5# 14.77±0.89
6# 9.69±0.54

图5

面料弹性模量与乳房竖直位移散点图"

图6

8种模型拟合曲线图"

表5

乳房竖直位移与面料弹性模量回归分析结果"

序号 模型 R2 调整后R2 F 估计值的标准误差 显著性p 拟合方程
1* 线性 0.769 0.712 13.338 1.861 0.022 B=-0.005E+17.876
2* 对数曲线 0.906 0.882 38.441 1.190 0.003 B=-3.455lnE+35.644
3* 逆函数 0.772 0.715 13.524 1.851 0.021 B=1 034.639/E+11.376
4* 复合曲线 0.850 0.813 22.675 0.107 0.009 ln B=ln(1.000)E+ln 18.138
5* 幂函数 0.913 0.891 41.947 0.082 0.003 lnB=-0.248lnE+ln64.289
6* S曲线 0.697 0.621 9.207 0.152 0.039 lnB=70.250/E+2.438
7* 增长曲线 0.850 0.813 22.675 0.107 0.009 lnB=0.000E+2.898
8* 指数曲线 0.850 0.813 22.675 0.107 0.009 lnB=0.000E+ln18.138
[1] 余越云, 吴志明. 运动文胸对乳房振幅影响因素的研究[J]. 丝绸, 2021, 58(3):51-57.
YU Yueyun, WU Zhiming. Research on the impact of sports bra on the amplitude of breast movements[J]. Journal of Silk, 2021, 58(3):51-57.
[2] SCURR J C, WHITE J L, HEDGER W. Supported and unsupported breast displacement in three dimensions across treadmill activity levels[J]. Journal of Sports Sciences, 2011, 29(1):55-61.
doi: 10.1080/02640414.2010.521944 pmid: 21077006
[3] 邱江元. 基于胸部力学模型的运动文胸穿着模拟[D]. 苏州: 苏州大学, 2016:12.
QIU Jiangyuan. Simulation of a breast and a sports bra interaction during exercise[D]. Suzhou: Soochow University, 2016:12.
[4] 陈晓娜, 阮佳. 压缩式运动文胸静态与动态压力变化规律研究[J]. 针织工业, 2019(2):61-64.
CHEN Xiaona, RUAN Jia. Variation regulation of static and dynamic pressure of compressed sports bra[J]. Knitting Industries, 2019(2): 61-64.
[5] PAGE K A, STEELE J R. Breast motion and sports brassiere design[J]. Sports medicine, 1999, 27(4):205-211.
doi: 10.2165/00007256-199927040-00001
[6] 陈晓娜, 王建萍. 文胸结构设计及其影响因素[J]. 纺织学报, 2012, 33(8):155-160.
CHEN Xiaona, WANG Jianping. Bra pattern making and its affecting factors[J]. Journal of Textile Research, 2012, 33(8):155-160.
[7] MCGHEE D E, STEELE J R. Biomechanics of breast support for active women[J]. Exercise and Sport Sciences Reviews, 2020, 48(3):1.
doi: 10.1249/JES.0000000000000212
[8] LU M, QIU J, WANG G, et al. Mechanical analysis of breast-bra interaction for sports bra design[J]. Materials Today Communications, 2016, 6:28-36.
doi: 10.1016/j.mtcomm.2015.11.005
[9] WHITE J, SCURR J, HEDGER W. A comparison of three-dimensional breast displacement and breast comfort during overground and treadmill running[J]. Journal of Applied Biomechanics, 2011, 27(1):47-53.
pmid: 21451182
[10] 郑雪, 陈晓娜, 孙光武. 运动文胸结构参数对其防震功能影响的研究进展[J]. 丝绸, 2022, 59(4): 45-51.
ZHENG Xue, CHEN Xiaona, SUN Guangwu. Research progress on the effect of structural parameters of the sports bra on its shock absorption function[J]. Journal of Silk, 2022, 59(4):45-51.
[11] 盛欣洋, 陈晓娜, 王建萍. 运动文胸防震功能的评价与作用机理研究[J]. 针织工业, 2022(10): 52-57.
SHENG Xinyang, CHEN Xiaona, WANG Jianping. Evaluation methods and action mechanism of sports bras with shock absorption function[J]. Knitting Industries, 2022(10):52-57.
[12] ZHOU J, YU W, NG S P. Identifying effective design features of commercial sports bras[J]. Textile Research Journal, 2012, 83(14):1500-1513.
doi: 10.1177/0040517512464289
[13] 吴济宏, 于伟东. 针织面料的拉伸弹性与服装压[J]. 武汉科技学院学报, 2006, 19(1):21-25.
WU Jihong, YU Weidong. The elasticity and clothing pressure of knitted fabrics[J]. Journal of Wuhan University of Science and Engineering, 2006, 19(1):21-25.
[14] 盛欣洋, 陈晓娜. 面料弹性模量对运动文胸防震功能的影响[J]. 浙江纺织服装职业技术学院学报, 2022, 21(2):34-39.
SHENG Xinyang, CHEN Xiaona. Effect of elastic modulus of fabrics on the shockproof function of sports bra[J]. Journal of Zhejiang Fashion Institute of Technology, 2022, 21(2):34-39.
[15] 陈晓娜, 王二会. 文胸钢圈对乳房竖直位移的影响[J]. 纺织学报, 2019, 40(7):133-137.
CHEN Xiaona, WANG Erhui. Influence of bra underwire on vertical breast displacement[J]. Journal of Textile Research, 2019, 40(7):133-137.
[1] 李亮, 倪俊芳. 绗缝机花样加工代码自动生成算法[J]. 纺织学报, 2020, 41(11): 162-167.
[2] 应双双, 裘柯槟, 郭宇飞, 周赳, 周华. 纺织品色彩管理色表测量数据的误差优化[J]. 纺织学报, 2020, 41(08): 74-80.
[3] 王建萍, 徐朔, 王竹君, 姚晓凤, 李永贵. 智能运动文胸电子监测系统设计方案与实施[J]. 纺织学报, 2020, 41(06): 105-111.
[4] 郑晶晶, 赵清瑶, 阎玉秀. 跑步运动中运动文胸对乳房振幅的影响[J]. 纺织学报, 2020, 41(03): 130-135.
[5] 周捷, 马秋瑞. 基于BP神经网络的运动文胸肩带属性与乳房振幅的函数关系[J]. 纺织学报, 2019, 40(09): 186-191.
[6] 陈慧娴, 鲁虹, 李书洋, 左恒. 运动文胸结构设计要素对穿着舒适性的影响[J]. 纺织学报, 2019, 40(09): 159-166.
[7] 高晓晓 江红霞. 应用3D打印技术的运动文胸模杯个性化定制[J]. 纺织学报, 2018, 39(11): 135-139.
[8] 叶晓露 庞程方 金娟凤 邹奉元. 短裤特征截面曲线的径向基函数神经网络模型构建[J]. 纺织学报, 2015, 36(05): 83-88.
[9] 王方圆 陈晓娜 王建萍. 胸部位移与文胸舒适性关系初探[J]. 纺织学报, 2013, 34(1): 106-109.
[10] 陈晓娜, 王建萍. 文胸结构设计及其影响因素[J]. 纺织学报, 2012, 33(8): 155-160.
[11] 覃蕊, 范雪荣, 陈东生. 男短袜袜口处标准腿截面曲线研究[J]. 纺织学报, 2012, 33(3): 119-123.
[12] 刘红;张明;陈东生;魏取福;王建刚;赵莉;涂红燕. 标准女体胸围曲线研究[J]. 纺织学报, 2011, 32(2): 117-120.
[13] 覃蕊;范雪荣;陈东生;王强;. 男短袜袜口压力的有限元研究[J]. 纺织学报, 2011, 32(1): 105-110.
[14] 尚笑梅;卢晨;王辉. 基于自动测体的围度曲线拟合模型[J]. 纺织学报, 2010, 31(4): 128-131.
[15] 石尖锋;李重;胡觉亮;金耀. 三维服装模型上的边界提取与编辑[J]. 纺织学报, 2010, 31(1): 129-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!