纺织学报 ›› 2023, Vol. 44 ›› Issue (11): 167-175.doi: 10.13475/j.fzxb.20221103501

• 染整与化学品 • 上一篇    下一篇

多孔型TiO2微粒的制备及其对离子型染料的吸附

黄彪1, 郑莉娜1, 秦妍1, 程羽君2, 李成才1, 朱海霖3, 刘国金1()   

  1. 1.浙江理工大学 浙江省纤维材料和加工技术研究重点实验室, 浙江 杭州 310018
    2.绍兴市质量技术监督检测院, 浙江 绍兴 312000
    3.浙江省现代纺织技术创新中心, 浙江 绍兴 312000
  • 收稿日期:2022-11-11 修回日期:2023-08-08 出版日期:2023-11-15 发布日期:2023-12-25
  • 通讯作者: 刘国金(1990—),男,副教授,博士。主要研究方向为功能性纺织品开发与应用。E-mail:guojin900618@163.com
  • 作者简介:黄彪(1995—),男,博士生。主要研究方向为功能性纺织品的开发。
  • 基金资助:
    浙江理工大学青年创新专项项目(22202303-Y)

Preparation of porous TiO2 particles and their adsorption for ionic dyes

HUANG Biao1, ZHENG Li'na1, QIN Yan1, CHENG Yujun2, LI Chengcai1, ZHU Hailin3, LIU Guojin1()   

  1. 1. Zhejiang Provincial Key Laboratory of Fiber Materials and Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Shaoxing Quality and Technical Supervision and Testing Institute, Shaoxing, Zhejiang 312000, China
    3. Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, Zhejiang 312000, China
  • Received:2022-11-11 Revised:2023-08-08 Published:2023-11-15 Online:2023-12-25

摘要:

针对印染废水中离子型染料的处理问题,提出以多孔型二氧化钛(TiO2)微粒为吸附剂对染料进行吸附处理。以钛酸丁酯为钛源,通过改变模板剂的种类,采用水热法制备带有不同电位的多孔型TiO2微粒。借助固体表面Zeta电位测试仪、场发射扫描电子显微镜、透射电子显微镜以及X射线衍射仪对TiO2的电位、形貌和晶型进行分析,通过吸附实验优化染料质量浓度和吸附剂用量,并探究TiO2微粒的重复利用性能。结果表明:带正电的TiO2微粒(G-TiO2)和带负电的TiO2微粒(Y-TiO2)分别只对阴离子型和阳离子型染料进行吸附,遵从静电吸附机制;2种TiO2微粒经过煅烧后的晶型均为锐钛矿型;在同等实验条件下,100 mg的G-TiO2对100 mg/L刚果红染料的吸附率高达99.5%,100 mg的Y-TiO2对20 mg/L亚甲基蓝染料的吸附率可达93.5%;在循环实验中,G-TiO2对刚果红染料循环吸附4次后吸附率降低约12.6%,而Y-TiO2对亚甲基蓝染料循环吸附5次后吸附率降低约17%。

关键词: 印染废水, 离子型染料, 吸附处理, 多孔, TiO2微粒, 重复利用性能

Abstract:

Objective The utilization rate of dyes is unable to reach 100% in practical situations, which inevitably leads to residual dyes in the water discharged after dyeing, causing serious water pollution. Therefore, it is necessary to develop a water treatment technology that can effectively treat dye wastewater. Aiming at the treatment of ionic dyes in printing and dyeing wastewater, porous titana (TiO2) particles were used as adsorbent to adsorb dyes.

Method In addition to the characteristics of stable chemical properties, low price, easy availability, and no toxicity, TiO2 particles also have the unique characteristic of photocatalysis. Therefore, TiO2 particles are often adopted to adsorb and catalyze dyes in wastewater. Through photocatalysis, the dye can be degraded, so that the TiO2 particles can be reused. With tetrabutyl orthotitanate as titanium source, porous TiO2 particles with different potentials were prepared by hydrothermal method using different templates, and then the crystal form of TiO2 particles was controlled by high-temperature calcination. The potential, morphology and crystal form of TiO2 were analyzed by solid surface Zeta potential test, field emission scanning electron microscopy(FETEM), transmission electron microscopy(TEM) and X-ray diffraction (XRD). The dye concentration and adsorbent dosage were optimized by adsorption test, and the reuse performance of TiO2 particles was explored.

Results Positively charged TiO2 particles (G-TiO2) adsorb anionic dyes only other than cationic dyes at all, while the negatively charged TiO2 particles (Y-TiO2) only adsorb cationic dyes other than anionic dyes (Fig. 3 and Fig. 4). The adsorption mechanism follows the electrostatic adsorption mechanism. G-TiO2 has a porous spherical structure formed by the aggregation of numerous particles, about 93% of which are microspheres with a particle size of 200-500 nm. Y-TiO2 is in the state of fine particle aggregation, and about 91% of which are microspheres with a particle size of 50-100 nm (Fig. 6 and Fig. 7). The crystal forms of the two kinds of TiO2 particles after calcination are anatase, which have photocatalytic properties (Fig. 9). Under the same experimental conditions, the adsorption rate of 100 mg/L Congo Red dye by 100 mg G-TiO2 can reach 99.5%, and that of 20 mg/L Methylene Blue dye by 100 mg Y-TiO2 can reach 93.5% (Fig. 11). In the cycle experiment, the adsorption rate of Congo Red dye by G-TiO2 decreased by about 12.6% after four cycles, while that of Methylene Blue dye by Y-TiO2 decreased by about 17% after five cycles (Fig. 13).

Conclusion Two kinds of porous TiO2 particles adsorbents were prepared by changing the type of template in the hydrothermal reaction. The adsorbents not only retain the capillary adsorption of conventional porous TiO2 particles on dyes, but also increase the electrostatic adsorption, which can realize the rapid adsorption of ionic dyes in printing and dyeing wastewater. The adsorbents can be chemically modified subsequently to have improved photocatalytic performance, and can also be loaded on polymer films or nonwovens for specific applications. This study will provide strategic support for the treatment of ionic dye wastewater.

Key words: printing and dyeing wastewater, ionic dye, adsorption treatment, porous, titania microsphere, reuse

中图分类号: 

  • TS179

图1

刚果红染料的标准曲线"

图2

亚甲基蓝染料的标准曲线"

图3

吸附剂对不同类型染料的吸附率"

图4

不同pH值条件下吸附剂吸附染料前后的Zeta电位"

图5

吸附剂对离子型染料的吸附机制"

图6

吸附剂的表面形貌"

图7

吸附剂的粒径分布"

图8

吸附剂的氮气吸附/脱附等温线和孔径分布"

表1

吸附剂的比表面积和最可几孔径及孔体积"

样品名称 比表面积/
(m2·g-1)
最可几孔径/
nm
孔体积/
(mL·g-1)
G-TiO2 74.139 9±0.556 1 16.238 4 0.310 0
Y-TiO2 365.571 6±0.363 8 6.026 9 0.271 5

图9

煅烧前后吸附剂的晶型结构"

图10

吸附剂对不同质量浓度染料的吸附率"

图11

不同吸附剂用量对染料的吸附率"

图12

吸附剂对染料的吸附实验"

图13

不同循环次数下吸附剂的吸附率及其质量变化"

[1] CHOI S, CHO K H, NAMGOONG J W, et al. The synthesis and characterisation of the perylene acid dye inks for digital textile printing[J]. Dyes and Pigments, 2019, 163: 381-392.
doi: 10.1016/j.dyepig.2018.12.002
[2] MAJHI D, PATRA B N. Preferential and enhanced adsorption of dyes on alum doped nanopolyaniline[J]. Journal of Chemical & Engineering Data, 2018, 63(9): 3427-3437.
doi: 10.1021/acs.jced.8b00312
[3] HOSSAIN M S, DAS S C, ISLAM J M M, et al. Reuse of textile mill ETP sludge in environmental friendly bricks: effect of gamma radiation[J]. Radiation Physics and Chemistry, 2018, 151: 77-83.
doi: 10.1016/j.radphyschem.2018.05.020
[4] YASEEN D A, SCHOLZ M. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review[J]. International Journal of Environmental Science and Technology, 2019, 16(2): 1193-1226.
doi: 10.1007/s13762-018-2130-z
[5] MUSTAPHA R, HARUN M H C, MANAS A, et al. Preparation and characterization of bio-adsorbent from coconut husk for remavol red dye removal[J]. Biointerface Research in Applied Chemistry, 2020, 11(2): 10006-10015.
doi: 10.33263/BRIAC
[6] NGULUBE T, GUMBO J R, MASINDI V, et al. An update on synthetic dyes adsorption onto clay based minerals: a state-of-art review[J]. Journal of Environmental Management, 2017, 191: 35-57.
doi: S0301-4797(16)31011-8 pmid: 28086140
[7] ABIDI N, DUPLAY J, JADA A, et al. Toward the understanding of the treatment of textile industries' effluents by clay: adsorption of anionic dye on kaoli-nite[J]. Arabian Journal of Geosciences, 2017, 10(16): 1-14.
doi: 10.1007/s12517-016-2714-1
[8] SHAH J, JAN M R, ZEESHAN M, et al. Kinetic, equilibrium and thermodynamic studies for sorption of 2, 4-dichlorophenol onto surfactant modified fuller's earth[J]. Applied Clay Science, 2017, 143: 227-233.
doi: 10.1016/j.clay.2017.03.040
[9] FIDELES R A, FERREIRA G M D, TEODORO F S, et al. Trimellitated sugarcane bagasse: a versatile adsorbent for removal of cationic dyes from aqueous solution: part I: batch adsorption in a monocomponent system[J]. Journal of Colloid and Interface Science, 2018, 515: 172-188.
doi: 10.1016/j.jcis.2018.01.025
[10] MOOSAVI S, LAI C W, GAN S, et al. Application of efficient magnetic particles and activated carbon for dye removal from wastewater[J]. ACS Omega, 2020, 5(33): 20684-20697.
doi: 10.1021/acsomega.0c01905 pmid: 32875202
[11] SI Y, LI J, CUI B, et al. Janus phenol-formaldehyde resin and periodic mesoporous organic silica nanoadsorbent for the removal of heavy metal ions and organic dyes from polluted water[J]. Advanced Composites and Hybrid Materials, 2022, 5(2): 1180-1195.
doi: 10.1007/s42114-022-00446-x
[12] 周小桔, 胡正龙, 任一鸣, 等. Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能[J]. 纺织学报, 2022, 43(10):97-105.
ZHOU Xiaoju, HU Zhenglong, REN Yiming, et al. Preparation of Bi2MoO6 Modified TiO2 composite nanorod array photocatalyst and its photocatalytic performance[J]. Journal of Textile Research, 2022, 43(10):97-105.
[13] LY X, ZHAO M, CHEN Z, et al. Prepare porous silica nanospheres for water sustainability: high efficient and recyclable adsorbent for cationic organic dyes[J]. Colloid and Polymer Science, 2018, 296(1): 59-70.
doi: 10.1007/s00396-017-4224-4
[14] 徐丽亚, 田启平, 许猛, 等. 小沙粒/TiO2的制备及其光催化降解亚甲基蓝性能的研究[J]. 工业催化, 2022, 30(1):44-47.
doi: 10.3969/j.issn.1008-1143.2022.01.007
XU Liya, TIAN Qiping, XU Meng, et al. Study on the photocatalytic degradation of Methylene Blue by microparticle/TiO2[J]. Industrial Catalysis, 2022, 30 (1):44-47.
doi: 10.3969/j.issn.1008-1143.2022.01.007
[15] KALIYAPERUMAL A, JAFFAR A. Au nanoparticles decorated sulfonated graphene-TiO2 nanocomposite for sunlight driven photocatalytic degradation of recalcitrant compound[J]. Solar Energy, 2020, 211(3):1194-1205.
doi: 10.1016/j.solener.2020.10.058
[16] SALEM A N M, AHMED M A, EL-SHAHAT M F. Selective adsorption of amaranth dye on Fe3O4/MgO nanoparticles[J]. Journal of Molecular Liquids, 2016, 219: 780-788.
doi: 10.1016/j.molliq.2016.03.084
[1] 张成成, 刘让同, 李淑静, 李亮, 刘淑萍. 聚左旋乳酸非溶剂挥发诱导成孔机制与纳米多孔纤维膜制备[J]. 纺织学报, 2023, 44(10): 16-23.
[2] 李璟孜, 娄蒙蒙, 黄世燕, 李方. 基于光热利用的金属有机骨架/石墨烯复合膜对印染废水的再生处理[J]. 纺织学报, 2023, 44(09): 116-123.
[3] 李红颖, 徐毅, 杨帆, 任瑞鹏, 周全, 吴丽杰, 吕永康. 三维乒乓菊状CdS/BiOBr催化剂的制备及其光催化降解罗丹明B[J]. 纺织学报, 2023, 44(09): 124-133.
[4] 王宸杨, 贾洁, 李发学. β-环糊精基金属有机框架材料的制备及其对重金属离子的吸附[J]. 纺织学报, 2023, 44(08): 158-166.
[5] 李方, 潘航, 章耀鹏, 马慧婕, 沈忱思. 印染废水中聚乙烯醇浆料的高效去除及六价铬的协同还原[J]. 纺织学报, 2023, 44(03): 147-157.
[6] 冯帅博, 强荣, 邵玉龙, 杨啸, 马茜, 陈博文, 陈熠, 高明洋, 陈彩虹. 丝瓜络衍生碳纤维基复合材料的电磁波吸收性能[J]. 纺织学报, 2023, 44(02): 69-75.
[7] 丁娟, 刘阳, 张晓飞, 郝克倩, 宗蒙, 孔雀. Fe/C多孔碳材料制备及其涂层棉织物的吸波性能[J]. 纺织学报, 2023, 44(02): 191-198.
[8] 胡倩, 杨涛语, 朱斐超, 吕汪洋, 吴明华, 余德游. 混合价态铁基金属有机框架催化过氧乙酸高效降解对硝基苯酚[J]. 纺织学报, 2022, 43(11): 133-140.
[9] 郑琳娟, 郁佳, 尹冲, 梁志结, 毛庆辉. 多酸基金属-有机框架负载棉织物的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 106-111.
[10] 周小桔, 胡正龙, 任一鸣, 谢兰东. Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 97-105.
[11] 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155.
[12] 王双双, 季志浩, 盛国栋, 金恩琪. 零价铁/氧化石墨烯复合吸附剂对染料和重金属的吸附性能[J]. 纺织学报, 2022, 43(09): 156-166.
[13] 王静, 娄娅娅, 王春梅. 铁基金属–有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(08): 126-131.
[14] 张雅宁, 张辉, 宋悦悦, 李文明, 李雯君, 姚佳乐. 废弃口罩基ZIF-8/Ag/TiO2复合材料的制备及其光催化降解染料性能[J]. 纺织学报, 2022, 43(07): 111-120.
[15] 高陆玺, 吕雪川, 张弛, 宋翰林, 高肖汉. 用于印染废水处理的改性絮凝剂合成及其脱色性能[J]. 纺织学报, 2022, 43(07): 121-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!