纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 142-150.doi: 10.13475/j.fzxb.20221104201

• 染整工程 • 上一篇    下一篇

涤纶织物表面耐久超疏水涂层制备及其水油分离性能

邵明军, 蹇玉兰, 唐唯, 柴希娟, 万辉, 解林坤()   

  1. 西南林业大学 云南省木材胶黏剂及胶合制品重点实验室, 云南 昆明 650224
  • 收稿日期:2022-11-15 修回日期:2023-05-26 出版日期:2024-04-15 发布日期:2024-05-13
  • 通讯作者: 解林坤(1974—),男,教授,博士。主要研究方向为材料表面科学与工程。E-mail:xielinkun@163.com。
  • 作者简介:邵明军(1997—),男,硕士生。主要研究方向为纺织品表面双疏功能化。
  • 基金资助:
    云南省农业基础研究联合专项重点项目(202101BD070001-011);国家自然科学基金项目(31760184);国家自然科学基金项目(31960297)

Preparation of durable superhydrophobic coatings on polyester fabric surfaces and its water-oil separation properties

SHAO Mingjun, JIAN Yulan, TANG Wei, CHAI Xijuan, WAN Hui, XIE Linkun()   

  1. Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming, Yunnan 650224, China
  • Received:2022-11-15 Revised:2023-05-26 Published:2024-04-15 Online:2024-05-13

摘要:

针对超疏水织物的整理工艺相对复杂且常用含氟化合物有毒的问题,将甲基三甲氧基硅烷(MTMS)、氨水和无水乙醇以体积比为3∶50∶50混合后常温水解,采用浸渍法一步制备了耐久性超疏水涤纶织物。探讨了水解时间对织物表面润湿性及形貌的影响,对整理后织物的表观形貌、化学结构与元素组成、润湿性、断裂强力及涂层的稳定性和耐久性等进行分析与表征。结果表明:当水解时间为120 min整理的涤纶织物具有超疏水性,其静态水接触角为(150.6±0.9)°,滚动角为9°;与未整理涤纶织物相比,超疏水涤纶织物经向、纬向的抗拉强度分别提高了8.31%和11.61%,且经600 min超声波洗涤、10 000次摩擦测试、24 h酸碱溶液浸泡及24 h紫外光老化测试后仍然保持超疏水性,具有较好的力学稳定性和环境耐久性;水解时间为90~210 min整理的涤纶织物,经5次水油分离循环测试其分离效率均在97.0%以上。该方法及工艺绿色高效,所制备的涤纶织物在水油分离、水体净化等领域具有潜在的应用前景和价值。

关键词: 涤纶织物, 甲基三甲氧基硅烷, 超疏水, 耐久性, 水油分离

Abstract:

Objective Superhydrophobic polyester fabrics have been widely used for the fields of self-cleaning and oil-water separation. However, the preparation methods for superhydrophobic fabrics usually involve complex processes and use of fluorine-containing compounds. Fabric finishes with nonfluorinated chemical coatings to attain durable water repellency have attracted broad attention in both academic and industry. This research aims to explore a green and efficient process for preparing durable superhydrophobic polyester fabrics with fluorine-free compounds.

Method Polyester fabrics pretreated with oxygen plasma were finished by impregnation method using hydrolyzed solution of methyltrimethoxysilane (MTMS), ammonia water and anhydrous ethanol at the volume ratio of 3∶50∶50. The effect of solution hydrolyzed time on the surface wettability and morphology of the fabrics was analyzed by contact angle measurement and scanning electron microscopy. The surface elemental composition and chemical structure of the polyester fabrics before and after finishing were analyzed by Energy dispersive X-ray spectroscopy (EDX), Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS), and the mechanical properties, stabilities, durability and water-oil separation characteristics of the superhydrophobic polyester fabrics were evaluated.

Results The pretreated polyester fabric by low temperature oxygen plasma was finished by MTMS solution with different hydrolytic times. The results showed that the surface of polyester fabric finished with MTMS presented different rough coatings at different hydrolytic times of MTMS solutions, and additional Si elements were found on the surface with the EDX observation. In FT-IR spectrum of the polyester fabric surface before and after MTMS finishing, it was showed that the bending and stretching vibration absorption peaks of Si—CH3 appeared on the finished polyester fabric surface at 1 262 and 779 cm-1 respectively, and the XPS test showed obviously signal peaks of Si2p and Si2p. The FT-IR and XPS analysis indicated that the MTMS was successfully finished on the surface of the polyester fabric. In the contact angle test, the MTMS-coated polyester fabrics were all hydrophobic, especially the polyester fabrics with 120-180 min hydrolyzed MTMS treatment reached superhydrophobicity, and the water contact angles were all greater than 150° and the sliding angle was less than 10°. Compared with the untreated polyester fabric, the tensile strength of the polyester fabric with 120 min hydrolyzed MTMS treatment was increased by 8.31% and 11.61% in the warp and weft directions, respectively. After 600 min ultrasonic washing, 10 000 abrasion tests, 24 h acid and alkaline solution immersion, and 24 h UV aging, the water contact angle of the surface of the superhydrophobic polyester fabric was still greater than 150°. In the five water-oil separation cycle tests, the separation efficiency of polyester fabrics with 90-210 min hydrolyzed MTMS treatment was above 97.0%. Moreover, it also showed good absorption performance in the absorption test with light and heavy oil in water.

Conclusion The surface wettability and micro-morphology of polyester fabrics were controlled by MTMS hydrolytic time. The hydrophobic properties of the polyester fabric were enhanced after MTMS finishing, and when the hydrolytic time was 120 min, a rough micro-nanostructure was formed on the surface of the polyester fabric, exhibiting a superhydrophobic state for the polyester fabric. The MTMS-coated polyester fabric had good mechanical properties, and the superhydrophobic coating had excellent resistance to ultrasonic washing, abrasion, acid-alkali corrosion and UV aging, as well as good anti-fouling and water-oil separation properties. This process is green and efficient, and the prepared polyester fabric has a great application potential in water-oil separation, water purification and other fields.

Key words: polyester fabric, methyltrimethoxysilane, superhydrophobicity, durability, water-oil separation

中图分类号: 

  • TS193

图1

MTMS制备超疏水/亲油涤纶织物示意图"

图2

MTMS整理前后涤纶织物的SEM照片(×10 000)"

表1

MTMS水解不同时间整理涤纶织物的元素组成"

整理方式 元素含量/%
C O Si
未整理 73.74 26.26
等离子体活化处理 72.62 27.38
MTMS水解30 min 72.99 26.50 0.51
MTMS水解120 min 65.44 26.62 7.94
MTMS水解240 min 71.36 25.55 3.09

图3

MTMS整理前后涤纶织物的红外光谱图"

图4

MTMS整理涤纶织物前后的XPS全谱及C1s高分辨率谱图"

图5

MTMS水解不同时间整理涤纶织物表面的水接触角"

图6

MTMS水解120 min整理涤纶织物的稳定性和耐久性"

图7

整理前后涤纶织物的抗污性能"

图8

MTMS整理涤纶织物的水油分离装置及其分离效率"

图9

MTMS水解120 min整理涤纶织物对轻油和重油的吸收特性"

[1] KONG X W, ZHU C X, LV J, et al. Robust fluorine-free superhydrophobic coating on polyester fabrics by spraying commercial adhesive and hyodrophobic fumed SiO2 nanoparticles[J]. Progress in Organic Coatings, 2020. DOI: 10.1016/j.porgcoat.2019.105342.
[2] 闫德峰, 刘子艾, 潘维浩, 等. 多功能超疏水表面的制造和应用研究现状[J]. 表面技术, 2021, 50(5): 1-19.
YAN Defeng, LIU Ziai, PAN Weihao, et al. Research status on the fabrication and application of multifunctional superhydrophobic surfaces[J]. Surface Technology, 2021, 50(5): 1-19.
[3] 闫征, 王立新, 潘盼. 水黾仿生特性与工程应用研究进展[J]. 河北科技大学学报, 2020, 41(3): 210-217.
YAN Zheng, WANG Lixin, PAN Pan. Research progress of water stride in bionic characteristic and engineering application[J]. Journal of Hebei University of Science and Technology, 2020, 41(3): 210-217.
[4] 王发鹏, 朱俊, 金满洁, 等. 基于玫瑰花瓣褶皱微表面特性仿生构筑疏水竹材的研究[J]. 世界竹藤通讯, 2019, 17(3): 22-25.
WANG Fapeng, ZHU Jun, JIN Manjie, et al. A study of bio-prepared hydrophobic bamboo based on fold microsurface characteristics of rose petals[J]. World Bamboo and Rattan, 2019, 17(3): 22-25.
[5] 李晶, 赵世才, 李强, 等. 类水稻叶多尺度表面构筑与各向疏水性[J]. 科学通报, 2017, 62(16): 1766-1773.
LI Jing, ZHAO Shicai, LI Qiang, et al. Fabrication of biomimetic multi-scale surface of rice leaf and anisotropic superhydrophobic properties[J]. Chinese Science Bulletin, 2017, 62(16): 1766-1773.
[6] 郭方舒, 张春明. 利用常压低温等离子体制备无氟超疏水棉织物[J]. 棉纺织技术, 2021, 49(8): 1-4.
GUO Fangshu, ZHANG Chunming. Fluorine-free super-hydrophobic cotton fabric prepared by low temperature plasma at atmospheric pressure[J]. Cotton Textile Technology, 2021, 49(8): 1-4.
[7] PAKDEL E, ZHAO H, WANG J F, et al. Superhydrophobic and photocatalytic self-cleaning cotton fabric using flower-like N-doped TiO2/PDMS coating[J]. Cellulose, 2021, 28: 8807-8820.
[8] CHEN L, WU F, LI Y L, et al. Robust and elastic superhydrophobic breathable fibrous membrane with in situ grown hierarchical structures[J]. Journal of Membrane Science, 2017, 547: 93-98.
[9] MONDAL S, PAL S, CHAUDHURI A, et al. Fluoropolymer adhered bioinspired hydrophobic, chemically durable cotton fabric for dense liquid removal and self-cleaning application[J]. Surface Engineering, 2020, 37: 1-9.
[10] 李维斌, 张程, 刘军. 超疏水棉织物制备及其在油水过滤分离中应用[J]. 纺织学报, 2021, 42(8): 109-114.
LI Weibin, ZHANG Cheng, LIU Jun. Preparation of superhydrophobic coated cotton fabrics for oil-water separation[J]. Journal of Textile Research, 2021, 42(8): 109-114.
[11] TUDU B K, KUMAR A, BHUSHAN B. Fabrication of superoleophobic cotton fabric for multi-purpose applications[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2019. DOI: 10.1098/rsta.2019.0129.
[12] LIU X L, GU Y C, MI T F, et al. Dip-coating approach to fabricate durable PDMS/STA/SiO2 superhydrophobic polyester fabrics[J]. Coatings, 2021. DOI: 10.3390/coatings11030326.
[13] HUANG J D, LI M M, REN C Y, et al. Preparation of high-efficiency flame-retardant and superhydrophobic cotton fabric by a multi-step dipping[J]. Coatings, 2021. DOI: 10.3390/coatings11101147.
[14] COSTELLO E, ROCK S, STRATAKIS N, et al. Exposure to per- and polyfluoroalkyl substances and markers of liver injury: a systematic review and meta-analysis[J]. Environmental Health Perspectives, 2022. DOI: 10.1289/ehp10092.
[15] LI J Y, WANG L, ZHANG X, et al. Per- and polyfluoroalkyl substances exposure and its influence on the intestinal barrier: an overview on the advances[J]. Science of the Total Environment, 2022. DOI: 10.1016/j.scitotenv.2022.158362.
[16] ZAHID M, MAZZON G, ATHANASSIOU A, et al. Environmentally benign non-wettable textile treatments: a review of recent state-of-the-art[J]. Advances in Colloid and Interface Science, 2019, 270: 216-250.
doi: S0001-8686(19)30080-6 pmid: 31277037
[17] OU J F, WANG F J, LI W, et al. Methyltrimethoxysilane as a multipurpose chemical for durable superhydrophobic cotton fabric[J]. Progress in Organic Coatings, 2020. DOI: 10.1016/j.porgcoat.2020.105700.
[18] CAI Z W, LIN J B, HONG X L. Transparent superhydrophobic hollow films (TSHFs) with superior thermal stability and moisture resistance[J]. RSC Advances, 2018, 8(1): 491-498.
[19] 路少伟, 蹇玉兰, 三福华, 等. 楠竹材表面硅烷化及防水/油润湿和渗透的特性[J]. 表面技术, 2022, 51(8): 443-451, 459.
LU Shaowei, JIAN Yulan, SAN Fuhua, et al. Silylation of moso bamboo (phyllostachys edulis) surface and preventable wettability and penetration for water and oil[J]. Surface Technology, 2022, 51(8): 443-451, 459.
[20] 黄江江, 王冠, 谢光荣, 等. 甲基三甲氧基硅烷水解液pH值对无铬锌铝涂层耐蚀性能的影响[J]. 材料保护, 2018, 51(7): 68-71, 103.
HUANG Jiangjiang, WANG Guan, XIE Guangrong, et al. Effect of pH value of methyltrimethoxysilane hydrolysate on corrosion resistance of chromium-free Zn-Al coating[J]. Materials Protection, 2018, 51(7): 68-71, 103.
[21] HAN C L, TANG T Y, DENG J, et al. Quantitative determination of base-catalyzed hydrolysis kinetics of methyltrimethoxysilane by in-situ raman spectro-scopy[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2022.136889.
[22] VERBIČ A, BRENČIČ K, PRIMC G. et al. Eco-friendly in situ ZnO synthesis on PET fabric using oxygen plasma and plant waste[J]. Coatings, 2022. DOI: 10.3390/coatings12040537.
[23] ROHITH K R, VINOD P, MARCELA Š. Hierarchically porous bio-based sustainable conjugate sponge for highly selective oil/organic solvent absorption[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202100640.
[24] 蒲泽佳, 侯建硕, 陈迎春, 等. 涤纶织物的有机硅改性硅溶胶超疏水整理[J]. 印染, 2015, 41(20): 1-4, 9.
PU Zejia, HOU Jianshuo, CHEN Yingchun, et al. Super hydrophobic finishing of polyester with organic silicon modified silica sol[J]. China Dyeing & Finishing, 2015, 41(20): 1-4, 9.
[25] XU L H, LIU Y D, YUAN X L, et al. One-pot preparation of robust, ultraviolet-proof superhydrophobic cotton fabrics for self-cleaning and oil/water separa-tion[J]. Cellulose, 2020, 27: 9005-9026.
[26] LIN H S, ROSU C, JIANG L, et al. Non-fluorinated superhydrophobic chemical coatings on polyester fabric prepared with kinetically-controlled hydrolyzed methyltrimethoxysilane[J]. Industrial and Engineering Chemistry Research, 2019, 58(33): 15368-15378.
[27] 邵灵达, 申晓, 金肖克, 等. 涤纶纤维表面复合改性对其亲水性的影响[J]. 丝绸, 2020, 57(2): 19-24.
SHAO Lingda, SHEN Xiao, JIN Xiaoke, et al. Effect of surface modification of polyester fiber on its proper-ties[J]. Journal of Silk, 2020, 57(2): 19-24.
[28] XIE A L, WANG B A, CHEN X P, et al. Facile fabrication of superhydrophobic polyester fabric based on rapid oxidation polymerization of dopamine for oil-water separation[J]. RSC Advances, 2021, 11: 26992-27002.
doi: 10.1039/d1ra05167a pmid: 35480020
[29] ROSU C, LIN H S, LU J, et al. Sustainable and long-time 'rejuvenation' of biomimetic water-repellent silica coating on polyester fabrics induced by rough mechanical abrasion[J]. Journal of Colloid and Interface Science, 2018, 516: 202-214.
doi: S0021-9797(18)30063-8 pmid: 29408106
[30] BRINKER C. Hydrolysis and condensation of silicates: effects on structure[J]. Journal of Non-Crystalline Solids, 1988, 100(1): 31-50.
[1] 王露砚, 张彩宁, 赵倩倩, 马志豪, 王煦漫. 紫外光/氨气双重响应超疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(11): 160-166.
[2] 柳敦雷, 陆佳颖, 薛甜甜, 樊玮, 刘天西. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 18-25.
[3] 张典典, 李敏, 关玉, 王思翔, 胡桓川, 付少海. 仿植被可见光-近红外反射光谱特征的分散染料印花织物制备及其性能[J]. 纺织学报, 2023, 44(01): 142-148.
[4] 张楚丹, 王锐, 王文庆, 刘燕燕, 陈睿. 阳离子改性阻燃涤纶织物的制备及其性能[J]. 纺织学报, 2022, 43(12): 109-117.
[5] 梅敏, 钱建华, 周榆凯, 杨晶晶. 纳米SiO2/含氟硅防水透湿整理剂的制备及其应用[J]. 纺织学报, 2022, 43(12): 118-124.
[6] 赵伦玉, 隋晓锋, 毛志平, 李卫东, 冯雪凌. 气凝胶材料在纺织品上的应用研究进展[J]. 纺织学报, 2022, 43(12): 181-189.
[7] 乔路阳, 吕巧莉, 胡乾恒, 王成龙, 郑今欢. 改性羰基铁粉制备及其在蓝光固化磁控超疏水薄膜中的应用[J]. 纺织学报, 2022, 43(12): 88-95.
[8] 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118.
[9] 高强, 范浩军, 颜俊, 陈玉国, 郑萍. 三维超疏水超细纤维绒面革的仿生构建[J]. 纺织学报, 2022, 43(10): 126-132.
[10] 杨宏林, 项伟, 董淑秀. 涤纶基纳米铜/还原氧化石墨烯复合材料的制备及其电磁屏蔽性能[J]. 纺织学报, 2022, 43(08): 107-112.
[11] 薛宝霞, 史依然, 张凤, 秦瑞红, 牛梅. 无卤氧化铁改性涤纶阻燃织物的制备及其性能[J]. 纺织学报, 2022, 43(05): 130-135.
[12] 王艳萍, 陈晓倩, 夏伟, 傅佳佳, 高卫东, 王鸿博, ARTUR Cavaco-Paulo. 角质酶在涤纶织物表面改性中的应用[J]. 纺织学报, 2022, 43(05): 136-142.
[13] 何杨, 张瑞萍, 何勇, 范爱民. 激光改性涤纶织物的分散染料染色性能[J]. 纺织学报, 2022, 43(04): 102-109.
[14] 何颖婷, 李敏, 王瑞丰, 王春霞, 付少海. 涤纶织物的连续式轧染工艺[J]. 纺织学报, 2022, 43(03): 110-115.
[15] 谢爱玲, 乐昱含, 艾馨, 王亚辉, 王义容, 陈新彭, 陈国强, 邢铁玲. 茶多酚改性超疏水涤纶织物制备及其在油水分离中的应用[J]. 纺织学报, 2022, 43(02): 162-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!