纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 228-238.doi: 10.13475/j.fzxb.20221105502
LU Yan1,2, HONG Yan1,2, FANG Jian1,2()
摘要:
为深入研究智能纺织品中柔性应变传感器的发展,探讨了其在检测人体运动轨迹、力学/声学特征以及各类生理指标信息方面的应用,着重阐述了机器学习在提升整个柔性应变传感系统性能方面的作用。通过系统综述最新研究进展,旨在深化对机器学习在基于智能纺织品的柔性应变传感器领域应用的理解。介绍了几种常见柔性应变传感器的原理结构和相关研究,并概述了与柔性应变传感器阵列相结合的先进机器学习算法;系统分析了基于智能纺织品的柔性应变传感器结合机器学习在不同领域中的最新研究,强调了在柔性应变传感器中使用机器学习的益处;最后针对基于智能纺织品的柔性应变传感器结合机器学习的应用所面临的挑战以及如何提升整个传感系统的实用性进行展望,以期能够推动机器学习在柔性智能可穿戴领域的广泛应用,从而进一步推动智能材料与智能纺织品的发展。
中图分类号:
[1] | LIU K, TEBYETEKERWA M, JI D, et al. Intelligent Materials[J]. Matter, 2020, 3(3): 590-593. |
[2] | 方剑, 任松, 张传雄, 等. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(9): 1-9. |
FANG Jian, REN Song, ZHANG Chuanxiong, et al. Electroactive fibrous materials for intelligent wearable textiles[J]. Journal of Textile Research, 2021, 42(9): 1-9. | |
[3] | 房翔敏, 曲丽君, 田明伟. 自供电纺织基柔性应变传感器研究进展[J]. 丝绸, 2022, 59(8): 36-47. |
FANG Xiangmin, QU Lijun, TIAN Mingwei. Research progress of self-powered textile-based flexible stress sensors[J]. Journal of Silk, 2022, 59(8): 36-47. | |
[4] | 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(5): 168-177. |
TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors based on conductive composite fibers[J]. Journal of Textile Research, 2021, 42(5): 168-177. | |
[5] | WANG Y, ZHU L, MEI D, et al. A highly flexible tactile sensor with an interlocked truncated sawtooth structure based on stretchable graphene/silver/silicone rubber composites[J]. Journal of Materials Chemistry C, 2019, 7(28): 8669-8679. |
[6] | WIEDERHOLD G, MCCARTHY J. Arthur samuel: pioneer in machine learning[J]. IBM Journal of Research and Development, 1992, 36(3): 329-331. |
[7] | CAI G, WANG J, QIAN K, et al. Extremely stretchable strain sensors based on conductive self-healing dynamic cross-links hydrogels for human-motion detection[J]. Advanced Science, 2017. DOI: 10.1002/advs.201600190. |
[8] | SURESH KUMAR V, KRISHNAMOORTHI C. Development of electrical transduction based wearable tactile sensors for human vital signs monitor: fundamentals, methodologies and applications[J]. Sensors and Actuators A: Physical, 2021. DOI: 10.1016/j.sna.2021.112582. |
[9] | HUANG J, LI D, ZHAO M, et al. Flexible electrically conductive biomass-based aerogels for piezoresistive pressure/strain sensors[J]. Chemical Engineering Journal, 2019, 373: 1357-1366. |
[10] | PUNEETHA P, MALLEM S P R, LEE Y W, et al. Strain-controlled flexible graphene/GaN/PDMS sensors based on the piezotronic effect[J]. ACS Applied Materials & Interfaces, 2020, 12(32): 36660-36669. |
[11] | QIU A, JIA Q, YU H, et al. Highly sensitive and flexible capacitive elastomeric sensors for compressive strain measurements[J]. Materials Today Communications, 2021, 26: 1-11. |
[12] | GUO J, ZHOU B, ZONG R, et al. Stretchable and highly sensitive optical strain sensors for human-activity monitoring and healthcare[J]. ACS Applied Materials & Interfaces, 2019, 11(37): 33589-33598. |
[13] | TANG X, MIAO Y, CHEN X, et al. A flexible and highly sensitive inductive pressure sensor array based on ferrite films[J]. Sensors (Basel), 2019, 19(10): 1-12. |
[14] | MA S, TANG J, YAN T, et al. Performance of flexible strain sensors with different transition mechanisms: a review[J]. IEEE Sensors Journal, 2022, 22(8): 7475-7498. |
[15] | FIORILLO A S, CRITELLO C D, PULLANO S A. Theory, technology and applications of piezoresistive sensors: a review[J]. Sensors and Actuators A: Physical, 2018, 281: 156-175. |
[16] | MITSUHIRO Shikidaa T S, KAZUO Satob, KOICHI Itoigawa. Active tactile sensor for detecting contact force and hardness of an object[J]. Sensors and Actuators A (Physical), 2003, 103(1/2): 213-218. |
[17] | PARK K I, SON J H, HWANG G T, et al. Highly-efficient, flexible piezoelectric PZT thin film nanogenerator on plastic substrates[J]. Advanced Materials, 2014, 26(16): 2514-2520. |
[18] | MAKIHATA M, MUROYAMA M, TANAKA S, et al. Design and fabrication technology of low profile tactile sensor with digital interface for whole body robot skin[J]. Sensors (Basel), 2018. DOI: 10.3390/s18072374. |
[19] | 赵利端, 刘丽妍, 何崟, 等. 基于碳纳米管的柔性应变传感器研究进展[J]. 材料科学与工程学报, 2022, 40(5): 883-889,908. |
ZHAO Liduan, LIU Liyan, HE Yin, et al. Research progress on carbon nanotube flexible sensors[J]. Journal of Materials Science & Engineering, 2022, 40(5): 883-889,908. | |
[20] | CHEN T, QIAO X, WEI P, et al. Tough gel-fibers as strain sensors based on strain-optics conversion induced by anisotropic structural evolution[J]. Chemistry of Materials, 2020, 32(22): 9675-9687. |
[21] | YANG H, FU J, CAO R, et al. A liquid lens-based optical sensor for tactile sensing[J]. Smart Materials and Structures, 2022. DOI: 10.1088/1361-665x/ac4d64. |
[22] | CHI C, SUN X, XUE N, et al. Recent progress in technologies for tactile sensors[J]. Sensors (Basel), 2018, 18(4): 1-29. |
[23] | TAO J, BAO R, WANG X, et al. Self-powered tactile sensor array systems based on the triboelectric effect[J]. Advanced Functional Materials, 2018. DOI: 10.1002/adfm.201806379. |
[24] | YANG H L, XIE X Z, KADOCH M. Machine learning techniques and a case study for intelligent wireless networks[J]. IEEE Network, 2020, 34(3): 208-215. |
[25] | JORDAN M I, MITCHELL T M. Machine learning:trends, perspectives, and prospectsing of nano-fibres[J]. Science, 2015, 349(6245): 255-260. |
[26] | WANG M, CUI Y, WANG X, et al. Machine learning for networking: workflow, advances and opportuni-ties[J]. IEEE Network, 2018, 32(2): 92-99. |
[27] | DUAN L, CUI S, QIAO Y, et al. Clustering based on supervised learning of exemplar discriminative information[J]. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2020, 50(12): 5255-5270. |
[28] | NIKBAKHT R, JONSSON A, LOZANO A. Unsupervised learning for parametric optimization[J]. IEEE Communications Letters, 2021, 25(3): 678-681. |
[29] | MATSUO Y, LECUN Y, SAHANI M, et al. Deep learning, reinforcement learning, and world models[J]. Neural Networks, 2022. DOI: 10.1016/j.neunet.2022.03.037. |
[30] | LIU Z, HUANG S, JIN W, et al. Broad learning system for semi-supervised learning[J]. Neurocomputing, 2021, 444: 38-47. |
[31] | WU J, SHENG V S, ZHANG J, et al. Multi-label active learning algorithms for image classification: overview and future promise[J]. ACM Computing Surveys, 2020. DOI: 10.1145/3379504. |
[32] | MANIA H, JORDAN M I, RECHT B. Active learning for nonlinear system identification with guarantees[J]. Journal of Machine Learning Research, 2022, 23(32): 1-30. |
[33] | DEN HENGST F, FRANçOIS-LAVET V, HOOGENDOORN M, et al. Planning for potential: efficient safe reinforcement learning[J]. Machine Learning, 2022, 111(6): 2255-2274. |
[34] | SHIRMOHAMMADLI V, BAHREYNI B. Machine learning for sensing applications: a tutorial[J]. IEEE Sensors Journal, 2022, 22(11): 10183-10195. |
[35] | JEON H, JUNG Y, LEE S, et al. Area-efficient short-time fourier transform processor for time-frequency analysis of non-stationary signals[J]. Applied Sciences, 2020. DOI: 10.3390/app10207208. |
[36] | HIRSCHBERG V, RODRIGUE D. Fourier trans-form (ft) analysis of the stress as a tool to follow the fatigue behavior of metals[J]. Applied Sciences, 2021, 11(8): 1-15. |
[37] | JI Y, WANG H. A revised Hilbert-Huang transform and its application to fault diagnosis in a rotor system[J]. Sensors (Basel), 2018. DOI: 10.3390/s18124329. |
[38] | GRADOLEWSKI D, MAGENES G, JOHANSSON S, et al. A wavelet transform-based neural network denoising algorithm for mobile phonocardiography[J]. Sensors (Basel), 2019, 19(4): 1-18. |
[39] |
DONATELLI R E, PARK J A, MATHEWS S M, et al. Time series analysis[J]. American Journal of Orthodontics and Dentofacial Orthopedics, 2022, 161(4): 605-608.
doi: 10.1016/j.ajodo.2021.07.013 pmid: 35337650 |
[40] | JIANG H, XIONG H, WU D, et al. AgFlow: fast model selection of penalized PCA via implicit regularization effects of gradient flow[J]. Machine Learning, 2021, 110(8): 2131-2150. |
[41] |
PRAVEEN KUMAR D, AMGOTH T, ANNAVARAPU C S R. Machine learning algorithms for wireless sensor networks: a survey[J]. Information Fusion, 2019, 49: 1-25.
doi: 10.1016/j.inffus.2018.09.013 |
[42] |
UNO K, ADACHI K, TRENDAFILOV N T. Clustered common factor exploration in factor analysis[J]. Psychometrika, 2019, 84(4): 1048-1067.
doi: 10.1007/s11336-019-09666-5 pmid: 30847650 |
[43] | LI Z, LI S. Neural network model-based control for manipulator: an autoencoder perspective[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021. DOI: 10.1109/tnnls.2021.3109953. |
[44] | KRAWCZYK B. Tensor decision trees for continual learning from drifting data streams[J]. Machine Learning, 2021, 110: 3015-3035. |
[45] | HU X, LI Y, CHEN G, et al. Identification of balance recovery patterns after slips using hierarchical cluster analysis[J]. Journal of Biomechanics, 2022. DOI: 10.1016/j.jbiomech.2022.111281. |
[46] |
LEE L C, LIONG C Y, JEMAIN A A. Partial least squares-discriminant analysis (PLS-DA) for classification of high-dimensional (HD) data: a review of contemporary practice strategies and knowledge gaps[J]. Analyst, 2018, 143(15): 3526-3539.
doi: 10.1039/c8an00599k pmid: 29947623 |
[47] | HUANG J-C, KO K-M, SHU M-H, et al. Application and comparison of several machine learning algorithms and their integration models in regression problems[J]. Neural Computing and Applications, 2019, 32(10): 5461-5469. |
[48] | KONG P-Y. Distributed sensor clustering using artificial neural network with local information[J]. IEEE Internet of Things Journal, 2022, 9(21): 21851-21861. |
[49] | NGUYEN T D, LEE J S. Recent development of flexible tactile sensors and their applications[J]. Sensors (Basel), 2021, 22(1): 1-24. |
[50] | FANG Y, ZOU Y, XU J, et al. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor[J]. Advanced Materials, 2021. DOI:10.1002/adma.202104178. |
[51] | ZHANG Q, JIN T, CAI J, et al. Wearable triboelectric sensors enabled gait analysis and waist motion capture for iot-based smart healthcare applications[J]. Advanced Science, 2022. DOI:10.1002/advs.202103694. |
[52] | GHOLAMI M, NAPIER C, PATINO A G, et al. Fatigue monitoring in running using flexible textile wearable sensors[J]. Sensors (Basel), 2020, 20(19): 1-11. |
[53] | SUNDARAM S, KELLNHOFER P, LI Y, et al. Learning the signatures of the human grasp using a scalable tactile glove[J]. Nature, 2019, 569(7758): 698-702. |
[54] | RAVENSCROFT D, PRATTIS I, KANDUKURI T, et al. Machine learning methods for automatic silent speech recognition using a wearable graphene strain gauge sensor[J]. Sensors (Basel), 2021, 22(1): 1-13. |
[55] | ZHANG Z, HE T, ZHU M, et al. Deep learning-enabled triboelectric smart socks for IoT-based gait analysis and VR applications[J]. npj Flexible Electronics, 2020, 4(1): 1-12. |
[56] | 荣百川. 基于机器学习的摔倒识别研究[D]. 南京: 南京信息工程大学, 2021: 19-34. |
RONG Baichuan. Research on fall recognition based on machine learning[D]. Nanjing: Nanjing Univeristy of Information Science & Technology, 2021: 19-34. | |
[57] | WANG Z, BU M, XIU K, et al. A flexible, stretchable and triboelectric smart sensor based on graphene oxide and polyacrylamide hydrogel for high precision gait recognition in parkinsonian and hemiplegic patients[J]. Nano Energy, 2022. DOI: 10.1016/j.nanoen.2022.107978. |
[58] | ZHOU Z, CHEN K, LI X, et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays[J]. Nature Electronics, 2020, 3(9): 571-578. |
[59] | WU X, LUO X, SONG Z, et al. Ultra-robust and sensitive flexible strain sensor for real-time and wearable sign language translation[J]. Advanced Functional Materials, 2023. DOI:10.1002/adtm.202303504. |
[60] | WOJCIK K, PIEKARCZYK M. Machine learning methodology in a system applying the adaptive strategy for teaching human motions[J]. Sensors (Basel), 2020, 20(1): 1-23. |
[61] |
CHEN M, OUYANG J, JIAN A, et al. Imperceptible, designable, and scalable braided electronic cord[J]. Nat Commun, 2022, 13(1): 7097.
doi: 10.1038/s41467-022-34918-x pmid: 36402785 |
[1] | 鞠宇, 王朝晖, 李博一, 叶勤文. 基于机器学习的服装生产线员工效率预测[J]. 纺织学报, 2024, 45(05): 183-192. |
[2] | 彭来湖, 侯良美, 齐育宝, 汝欣, 刘建廷. 基于自适应Loess的纱线张力信号处理方法[J]. 纺织学报, 2024, 45(02): 246-254. |
[3] | 董凯, 吕天梅, 盛非凡, 彭晓. 面向个性化健康医疗的智能纺织品研究进展[J]. 纺织学报, 2024, 45(01): 240-249. |
[4] | 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25. |
[5] | 王梦蕾, 王静安, 高卫东. 计算机辅助配棉技术研究进展[J]. 纺织学报, 2023, 44(08): 225-233. |
[6] | 胡安钟, 王成成, 钟子恒, 张丽平, 付少海. 氮化硼纳米片掺杂型快速响应温致变色织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 164-170. |
[7] | 王中昱, 苏云, 王云仪. 机器学习建立的个体热舒适模型及其在服装领域的应用展望[J]. 纺织学报, 2023, 44(05): 228-236. |
[8] | 彭阳阳, 盛楠, 孙丰鑫. 纤维基湿敏柔性驱动器的跨尺度构建及其性能[J]. 纺织学报, 2023, 44(02): 90-95. |
[9] | 牛丽, 刘青, 陈超余, 蒋高明, 马丕波. 仿生鳞片针织结构自供能传感织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 135-142. |
[10] | 吴靖, 韩晨晨, 高卫东. 基于类骨骼肌结构的纱线基驱动器性能及应用[J]. 纺织学报, 2023, 44(02): 128-134. |
[11] | 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86. |
[12] | 肖渊, 李倩, 张威, 胡汉春, 郭鑫雷. 微喷印原电池置换成型织物基柔性导电线路的影响因素研究[J]. 纺织学报, 2022, 43(10): 89-96. |
[13] | 杨梦凡, 王潮霞, 殷允杰, 邱华. 棉织物的螺吡喃微胶囊印花及其光致变色性能[J]. 纺织学报, 2022, 43(09): 137-142. |
[14] | 刘欢欢, 王朝晖, 叶勤文, 陈子唯, 郑婧瑾. 可穿戴技术在情绪识别中的应用进展及发展趋势[J]. 纺织学报, 2022, 43(08): 197-205. |
[15] | 李瑞凯, 李瑞昌, 朱琳, 刘向阳. 基于石墨烯织物电极的七导联心电监测系统[J]. 纺织学报, 2022, 43(07): 149-154. |
|