纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 35-42.doi: 10.13475/j.fzxb.20221105701
王新庆1, 季东圣1, 李舒畅1, 杨晨1, 张宗宇1, 刘实诚2, 王航1,3(), 田明伟1,4
WANG Xinqing1, JI Dongsheng1, LI Shuchang1, YANG Chen1, ZHANG Zongyu1, LIU Shicheng2, WANG Hang1,3(), TIAN Mingwei1,4
摘要:
针对传统气凝胶纤维后处理操作复杂、加工不稳定等问题,且为有效集成纳米气凝胶与纳米纤维功能和结构优势,本文围绕新型气凝胶复合纳米纤维成形与结构调控的关键难题,利用溶液喷射同轴纺丝技术将聚丙烯腈(PAN)与SiO2气凝胶通过一步法制备PAN/SiO2气凝胶复合纳米纤维,研究了复合纳米纤维中SiO2气凝胶质量浓度对纤维形态结构、稳定性、孔径分布、隔热性能的影响。结果表明:所制备的PAN/SiO2气凝胶复合纳米纤维形态结构上呈三维卷曲状,SiO2气凝胶的引入使纤维表面形成多孔褶皱型结构,且纤维表面的微孔、介孔含量随SiO2气凝胶质量浓度的增加逐渐增多;该气凝胶复合纳米纤维具有优异的隔热性能,当SiO2气凝胶质量浓度为6 mg/mL时,PAN/SiO2气凝胶复合纳米纤维在40 ℃的导热系数低至0.037 38 W/(m·K),未来在服用保暖、工业隔热、军用热红外屏蔽等方面具有广阔的应用前景。
中图分类号:
[1] | LI Z, CHENG X, HE S, et al. Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance[J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 316-325. |
[2] | MENG S, ZHANG J, CHEN W, et al. Construction of continuous hollow silica aerogel fibers with hierarchical pores and excellent adsorption performance[J]. Microporous and Mesoporous Materials, 2019, 273: 294-296. |
[3] | LINHARES T, AMORIM M T, DURÃES L. Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications[J]. Journal of Materials Chemistry A:Materials for Energy and Sustainability, 2019, 7(4): 22282-22768. |
[4] | DORCHEH A S, ABBASI M H. Silica aerogel; synthesis, properties and characterization[J]. Journal of Materials Processing Technology, 2008, 199(1-3): 10-26. |
[5] | 吴晓栋, 宋梓豪, 王伟, 等. 气凝胶材料的研究进展[J]. 南京工业大学学报(自然科学版), 2020, 42(4): 405-451. |
WU Xiaodong, SONG Zihao, WANG Wei, et al. Advances of aerogels materials[J]. Journal of Nanjing Tech University (Natural Science Edition), 2020, 42(4): 405-451. | |
[6] | XIE J, NIU L, QIAO Y, et al. Impact energy absorption behavior of graphene aerogels prepared by different drying methods[J]. Materials and Design, 2022. DOI:10.1016/j.matdes.2022.110912. |
[7] | ZHENG MINGLIANG. The model and experiment for heat transfer characteristics of nanoporous silica aero-gel[J]. Korean Journal of Materials Research, 2020, 30(4): 155-159. |
[8] | ZIMMERMANN M V G, ZATTERA A J. Silica aerogel reinforced with cellulose nanofibers[J]. Journal of Porous Materials, 2021, 28(5): 1325-1333. |
[9] |
潘月磊, 张和平, 闫明远, 等. 二氧化硅气凝胶及其在保温隔热领域应用进展[J]. 化工进展, 2023, 42(1): 297-309.
doi: 10.16085/j.issn.1000-6613.2022-0512 |
PAN Yuelei, ZHANG Heping, YAN Mingyuan, et al. Silica aerogel and its application in the field of thermal insulation[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 297-309.
doi: 10.16085/j.issn.1000-6613.2022-0512 |
|
[10] | 范龄元, 张梅, 郭敏. 二氧化硅气凝胶的制备、氨基改性及低温吸附CO2性能研究进展[J]. 材料导报, 2022, 36(15): 5-12. |
FAN Lingyuan, ZHANG Mei, GUO Min. Preparation and amino modification of silica aerogel and its low temperature adsorption of CO2: a review[J]. Materials Reports, 2022, 36(15): 5-12. | |
[11] |
杨景锋, 王齐华, 王廷梅. 氧化铝气凝胶的合成与性能[J]. 无机材料学报, 2018, 33(3): 259-265.
doi: 10.15541/jim20170180 |
YANG Jingfeng, WANG Qihua, WANG Tingmei. Synthesis and property of alumina aerogel[J]. Journal of Inorganic Materials, 2018, 33(3): 259-265.
doi: 10.15541/jim20170180 |
|
[12] | 温培刚, 巢雄宇, 袁武华, 等. 耐高温氧化铝气凝胶研究进展[J]. 材料导报, 2016, 30(15): 51-56. |
WEN Peigang, CHAO Xiongyu, YUAN Wuhua, et al. Research progress in highly thermally stable alumina aerogels[J]. Materials Reports, 2016, 30(15): 51-56. | |
[13] | YANG J, WANG Q, WANG T, et al. Facile one-step precursor-to-aerogel synthesis of silica-doped alumina aerogels with high specific surface area at elevated temperatures[J]. Journal of Porous Materials, 2017, 24(4): 889-897. |
[14] | HOU X, ZHANG R, FANG D. An ultralight silica-modified ZrO2-SiO2 aerogel composite with ultra-low thermal conductivity and enhanced mechanical strength[J]. Scripta Materialia, 2018, 143: 113-116. |
[15] |
朱伟卓, 吴幼青, 吴诗勇, 等. 氧化锆掺杂铝硅复合气凝胶耐热性能研究[J]. 功能材料, 2022, 53(7): 7102-7108.
doi: 10.3969/j.issn.1001-9731.2022.07.013 |
ZHU Weizhuo, WU Youqing, WU Shiyong, et al. Study on heat resistance of aluminum-silicon composite aerogel doped with zirconia[J]. Jorunal of Functional Materials, 2022, 53(7): 7102-7108. | |
[16] | LIU B, LIU X, ZHAO X, et al. High-strength, thermal-stable ZrO2 aerogel from polyacetylace-tonatozirconium[J]. Chemical Physics Letters, 2019, 715: 109-114. |
[17] | 祖国庆, 沈军, 王文琴, 等. 耐高温核/壳结构TiO2/SiO2复合气凝胶的制备及其光催化性能[J]. 物理化学学报, 2015, 31(2): 360-368. |
ZU Guoqing, SHEN Jun, WANG Wenqin, et al. Preparation of heat-resistant, core/shell nanostructured TiO2/SiO2 composite aerogels and their photocatalytic properties[J]. Acta Physico-Chimica Sinica, 2015, 31(2): 360-368. | |
[18] | WANG H, ZHANG X, WANG N, et al. Ultralight, scalable, and high-temperature-resilient ceramic nanofiber sponges[J]. Science Advances, 2017. DOI:10.1126/sciadv.1603170. |
[19] | LUO J, WANG H. Preparation, thermal insulation and flame retardance of cellulose nanocrystal aerogel modified by TiO2[J]. International Journal of Heat and Technology, 2018, 36(2): 614-618. |
[20] | PATIL S P, SHENDYE P, MARKERT B. Mechanical properties and behavior of glass fiber-reinforced silica aerogel nanocomposites: insights from all-atom simulations[J]. Scripta Materialia, 2020, 177: 65-68. |
[21] | SUN W, FANG Y, WU L. Preparation and properties of down feather fibers reinforced cellulose composite aerogel[J]. Journal of Porous Materials, 2022. DOI:10.1007/s10934-022-01331-0. |
[22] | 高庆福, 张长瑞, 冯坚, 等. 氧化硅气凝胶隔热复合材料研究进展[J]. 材料科学与工程学报, 2009, 27(2): 302-306. |
GAO Qingfu, ZHANG Changrui, FENG Jian, et al. Progress of silica aerogel insulation composites[J]. Journal of Materials Science and Engineering, 2009, 27(2): 302-306. | |
[23] | MALEKI H, DURÃES L, PORTUGAL A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies[J]. Journal of Non-Crystalline Solids, 2014, 385: 55-74. |
[24] | 张训虎, 翟萍, 栾强, 等. 溶胶凝胶法制备SiO2气凝胶/石英纤维增强石英复合材料及其性能表征[J]. 硅酸盐通报, 2018, 37(1): 221-224. |
ZHANG Xunhu, ZHAI Ping, LUAN Qiang, et al. Characterization of SiO2 aerogel/SiO2 fiber composites prepared by sol-gel method[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(1): 221-224. | |
[25] | 华媛. SiO2纳米纤维/纳米颗粒复合材料的制备及性能探究[D]. 上海: 东华大学, 2022:35-37. |
HUA Yuan. Study on preparation and properties of silica nanofiber/ nanoparticle composites[D]. Shanghai: Donghua University, 2022:35-37. | |
[26] | HIRANO S I, YOGO T, SAKAMOTO W, et al. In situ processing of nano crystalline oxide particles/polymer hybrid[J]. Journal of Sol-Gel Science and Technology, 2003, 26(1-3): 35-41. |
[27] | SU L, WANG H J, NIU M, et al. Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation[J]. Science Advances, 2020.DOI:10.1126/sciadv.aay6689. |
[28] | 张欣欣. 弹性抗压ZrO2纳米纤维基气凝胶的构建及隔热性能研究[D]. 上海: 东华大学, 2022:37-39. |
ZHANG Xinxin. Elastic and strong zirconia nanofibrous based aerogels: construction and thermal insulation application[D]. Shanghai: Donghua University, 2022:37-39. | |
[29] | WANG W, ZHAO Y, YAN W, et al. Preparation of the novel B4C-SiC composite aerogel with high compressive strength and low thermal conductivity[J]. Journal of Porous Materials, 2021, 28(3): 703-710. |
[30] | GU H, HOU X, ZHANG R, et al. Novel high-temperature-resistant Y2SiO5 aerogel with ultralow thermal conductivity[J]. International Journal of Applied Ceramic Technology, 2019, 16(6): 2393-2397. |
[31] | ZHANG X, LIU C, ZHANG X, et al. Super strong, shear resistant, and highly elastic lamellar structured ceramic nanofibrous aerogels for thermal insulation[J]. Journal of Materials Chemistry A, 2021, 9(48): 27415-27423. |
[32] | YANG M, LIXIA Y, CHEN Z, et al. Flexible electrospun strawberry-like structure SiO2 aerogel nanofibers for thermal insulation[J]. Ceramics International, 2022. DOI:10.1016/j.ceramint.2022.11.076. |
[33] | 王航, 庄旭品, 董锋, 等. 溶液喷射纺纳米纤维制备技术及其应用进展[J]. 纺织学报, 2018(7): 165-173. |
WANG Hang, ZHUANG Xupin, DONG Feng, et al. Preparation technology and application progress of solution blown nanofibers[J]. Journal of Textile Research, 2018(7): 165-173. | |
[34] |
GAO Y, ZHANG J, SU Y, et al. Recent progress and challenges in solution blow spinning[J]. Materials Horizons, 2021, 8(2): 426-446.
doi: 10.1039/d0mh01096k pmid: 34821263 |
[35] | 高庆福. 纳米多孔SiO2、Al2O3气凝胶及其隔热复合材料研究[D]. 长沙: 国防科技大学, 2009:42-46. |
GAO Qingfu. Nano-porous silica, alumina aerogels and thermal super-insulation composites[D]. Changsha: National University of Defense Technology, 2009:42-46. | |
[36] | 韦丽, 范金娟, 王云英, 等. SiO2气凝胶及纤维复合SiO2气凝胶隔热材料表征方法[J]. 失效分析与预防, 2016, 11(3): 196-202. |
WEI Li, FAN Jinjuan, WANG Yunying, et al. Development situation of characterization methods of SiO2 aerogel and fiber composites SiO2 aerogel insula-tion[J]. Failure Analysis and Prevention, 2016, 11(3): 196-202. | |
[37] | YU H, TONG Z, ZHANG B, et al. Thermal radiation shielded, high strength, fire resistant fiber/nanorod/aerogel composites fabricated by in-situ growth of TiO2 nanorods for thermal insulation[J]. Chemical Engineering Journal, 2021.DOI:10.1016/j.cej.2021.129342. |
[38] |
ZHANG H, FENG J, LI L, et al. Preparation of a carbon fibre-reinforced carbon aerogel and its application as a high-temperature thermal insulator[J]. RSC Advances, 2022, 12(22): 13783-13791.
doi: 10.1039/d2ra00276k pmid: 35541432 |
[39] | 郝栋连, 冯慧, 苏悦, 等. 高温隔热材料的研究现状及发展趋势[J]. 合成纤维工业, 2022, 45(1): 68-73. |
HAO Donglian, FENG Hui, SU Yue, et al. Research status and development trend of high temperature thermal insulation materials[J]. China Synthetic Fiber Industry, 2022, 45(1): 68-73. |
[1] | 陈锦苗, 李纪伟, 陈萌, 宁新, 崔爱华, 王娜. 壳聚糖微纳米纤维复合抗菌空气滤材的制备及其性能[J]. 纺织学报, 2024, 45(05): 19-26. |
[2] | 冯颖, 于汉哲, 张宏, 李可心, 马标, 董鑫, 张建伟. 静电纺壳聚糖基纳米纤维的制备及其在水处理中应用研究进展[J]. 纺织学报, 2024, 45(05): 218-227. |
[3] | 栗志坤, 于影, 左雨欣, 史豪秦, 金玉珍, 陈洪立. 聚丙烯腈/二硫化钼复合薄膜的挠曲电效应分析及其应用[J]. 纺织学报, 2024, 45(05): 27-34. |
[4] | 梁文静, 吴俊贤, 何崟, 刘皓. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(04): 15-23. |
[5] | 李朝威, 成悦, 苏新, 陈鹏飞, 李大伟, 付译鋆. 聚偏氟乙烯纳米纤维的结构调控及其在生物医学领域应用研究进展[J]. 纺织学报, 2024, 45(04): 229-237. |
[6] | 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32. |
[7] | 贾琳, 董晓, 王西贤, 张海霞, 覃小红. 聚己内酯/MgO复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(04): 59-66. |
[8] | 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75. |
[9] | 杨琪, 邓南平, 程博闻, 康卫民. 树枝状磺化聚醚砜纤维基复合固态电解质的制备及其性能[J]. 纺织学报, 2024, 45(03): 1-10. |
[10] | 赵美奇, 陈莉, 钱现, 李晓娜, 杜迅. 用于铜离子检测的静电纺纤维膜制备及其性能[J]. 纺织学报, 2024, 45(03): 11-18. |
[11] | 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55. |
[12] | 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64. |
[13] | 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16. |
[14] | 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25. |
[15] | 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26. |
|