纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 35-42.doi: 10.13475/j.fzxb.20221105701

• 纤维材料 • 上一篇    下一篇

包载型聚丙烯腈/SiO2气凝胶复合纳米纤维制备及其隔热性能

王新庆1, 季东圣1, 李舒畅1, 杨晨1, 张宗宇1, 刘实诚2, 王航1,3(), 田明伟1,4   

  1. 1.青岛大学 纺织服装学院, 山东 青岛 266071
    2.江苏百护纺织科技有限公司, 江苏 宿迁 223800
    3.青岛大学 山东省特型非织造材料工程研究中心, 山东 青岛 266071
    4.青岛大学 智能可穿戴技术研究中心, 山东 青岛 266071
  • 收稿日期:2022-11-21 修回日期:2023-09-07 出版日期:2024-05-15 发布日期:2024-05-31
  • 通讯作者: 王航(1990—),男,副教授,博士。主要研究方向为功能纳米纤维与智能纺织品。E-mail: wanghang@qdu.edu.cn。
  • 作者简介:王新庆(2002—),男。主要研究方向为功能纳米纤维与非织造材料。
  • 基金资助:
    国家自然科学基金项目(22208178);山东省科技型中小企业创新能力提升工程项目(2023TSGC0344);山东省青创科技创新团队项目(2023KJ223);青岛市关键技术攻关及产业化示范类项目(23-1-7-zdfn-2-hz);宿迁市重点研发计划(H202310);泰山学者工程专项经费支持项目(tsqn202211116)

Preparation and thermal insulation properties of encapsulated polyacrylonitrile/SiO2 aerogel composite nanofibers

WANG Xinqing1, JI Dongsheng1, LI Shuchang1, YANG Chen1, ZHANG Zongyu1, LIU Shicheng2, WANG Hang1,3(), TIAN Mingwei1,4   

  1. 1. College of Textiles & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Jiangsu Baihoo Textiles Technology Co., Ltd., Suqian, Jiangsu 223800, China
    3. Shandong Province Special Nonwoven Materials Engineering Research Center, Qingdao University, Qingdao, Shandong 266071, China
    4. Smart Wearable Technology Research Center, Qingdao University, Qingdao, Shandong 266071, China
  • Received:2022-11-21 Revised:2023-09-07 Published:2024-05-15 Online:2024-05-31

摘要:

针对传统气凝胶纤维后处理操作复杂、加工不稳定等问题,且为有效集成纳米气凝胶与纳米纤维功能和结构优势,本文围绕新型气凝胶复合纳米纤维成形与结构调控的关键难题,利用溶液喷射同轴纺丝技术将聚丙烯腈(PAN)与SiO2气凝胶通过一步法制备PAN/SiO2气凝胶复合纳米纤维,研究了复合纳米纤维中SiO2气凝胶质量浓度对纤维形态结构、稳定性、孔径分布、隔热性能的影响。结果表明:所制备的PAN/SiO2气凝胶复合纳米纤维形态结构上呈三维卷曲状,SiO2气凝胶的引入使纤维表面形成多孔褶皱型结构,且纤维表面的微孔、介孔含量随SiO2气凝胶质量浓度的增加逐渐增多;该气凝胶复合纳米纤维具有优异的隔热性能,当SiO2气凝胶质量浓度为6 mg/mL时,PAN/SiO2气凝胶复合纳米纤维在40 ℃的导热系数低至0.037 38 W/(m·K),未来在服用保暖、工业隔热、军用热红外屏蔽等方面具有广阔的应用前景。

关键词: 聚丙烯腈, 纳米纤维, 溶液喷射同轴纺丝技术, 气凝胶复合纤维, SiO2气凝胶, 隔热材料

Abstract:

Objective Aerogel is a novel class of three-dimensional network solid materials, which are porous, high in thermal resistance, and low in volume density, and can be prepared by sol-gel method under the action of gaseous dispersion medium. Aerogels therefore have enormous application potential in the area of thermal insulators, energy conservation because they can effectively delay and block heat flow and reduce heat loss. However, low mechanical strength, high brittleness and easy breakage would hinder the actual aerogel applications. One-step forming of aerogel composite fiber can be achieved by using polymer solution and aerogel powder, and the synergistic improvement of thermal insulation/warmth retention performance can be further achieved by regulating the microstructure of monomer fiber and the macro structure of fiber assembly. However, there are few reports on this aspect.

Method In order to effectively integrate the functional and structural advantages of nano-aerogel and nanofiber, a new production technology was designed and developed to prepare polyacrylonitrile (PAN)/SiO2 aerogel composite nanofibers by one-step method using coaxially solution blowing process. In spinning process, the SiO2 aerogel and the PAN were served as core layer and skin layer respectively, at the speed of 2 mL/h and 12 mL/h. The influences of SiO2 aerogel content in composite fibers on fiber morphology, structure, stability, mechanical properties, and thermal insulation properties were specifically studied.

Results The PAN/SiO2 aerogel composite nanofibers prepared by coaxially solution blown spinning were continuous, uniform and loosely arranged, and the fiber diameter was distributed primarily in the range of 100-400 nm. Furthermore, three-dimensional crimps were shown in morphology and structure due to the disordered shearing effect of high-speed airflow during the fiber forming process. The introduction of SiO2 aerogel significantly affected the surface morphology of the fibers, forming a porous fold structure. PAN/SiO2 aerogel composite nanofibers were heated up in an oven at 180 ℃ for 240 min to evaluate their thermal stability. After heating, the fibers still retained their porous fold structure, showing good thermal stability. Moreover, the contents of micropores and mesoporous pores on the fiber surface were gradually increased with the increase of SiO2 aerogel content. The obtained PAN/SiO2 aerogel composite nanofibers demonstrated excellent thermal insulation, and the thermal conductivity of the sample with SiO2 aerogel mass concentration of 6 mg/mL was as low as 0.037 38 W/(m·K) at 40 ℃. Under the condition of 50 ℃, the surface temperature of the fiber tested by thermal infrared was 32.5 ℃, and under the condition of 65 ℃, the surface temperature of the fiber tested by thermal infrared was 37.5 ℃. In addition, the weighed PAN/SiO2 aerogel composite nanofibers had a low gram weight (about 70 g/m2), and felt soft and fluffy. Owing to its excellent thermal insulation and convenient and stable production process, PAN/SiO2 aerogel composite nanofibers indicate a broad future market in aspects of thermal insulation, field survival and industrial thermal insulation.

Conclusion This paper reported a new route of macro quantization preparation of aerogel composite nanofibers by "one-step method". Specifically, PAN/SiO2 aerogel composite nanofibers were prepared by solution blowing coaxial spinning technology using PAN and SiO2 aerogel particles. In conclusion, the prepared solution blown aerogel fiber has the advantages of low weight and flexible manufacture process, and the spinning efficiency can reach 8-12 times that of electrospinning. It can play a broad application prospect in the aspects of thermal insulation, industrial thermal insulation, and military thermal infrared shielding. In the future, an important development direction of aerogel fibers and their products is to utilize simple fiber processing technology to realize one-step integrated processing.

Key words: polyacrylonitrile, nanofiber, coaxially solution blowing process, aerogel composite fiber, SiO2 aerogel, thermal insulation material

中图分类号: 

  • TQ342.3

图1

纺丝流程示意图"

图2

包载型PAN/SiO2气凝胶纳米纤维宏观集合体及表面微观结构"

图3

包载型PAN/SiO2气凝胶纳米纤维截面微观结构"

图4

高温加热后包载型PAN/SiO2气凝胶纳米纤维表面微观结构"

图5

包载型PAN/SiO2气凝胶纳米纤维和PAN纳米纤维孔径分布曲线 注:V表示孔体积;D表示孔径。"

表1

包载型气凝胶纤维导热系数"

样品编号 测试温度/℃ 导热系数/(W·m-1·K-1)
PAN/SiO2-1 40 0.042 72
80 0.046 37
PAN/SiO2-2 40 0.040 06
80 0.044 72
PAN/SiO2-3 40 0.037 38
80 0.039 15
PAN 40 0.055 49
80 0.059 74

图6

不同温度下PAN/SiO2-3与普通无胶棉样品表面的热红外成像图"

[1] LI Z, CHENG X, HE S, et al. Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance[J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 316-325.
[2] MENG S, ZHANG J, CHEN W, et al. Construction of continuous hollow silica aerogel fibers with hierarchical pores and excellent adsorption performance[J]. Microporous and Mesoporous Materials, 2019, 273: 294-296.
[3] LINHARES T, AMORIM M T, DURÃES L. Silica aerogel composites with embedded fibres: a review on their preparation, properties and applications[J]. Journal of Materials Chemistry A:Materials for Energy and Sustainability, 2019, 7(4): 22282-22768.
[4] DORCHEH A S, ABBASI M H. Silica aerogel; synthesis, properties and characterization[J]. Journal of Materials Processing Technology, 2008, 199(1-3): 10-26.
[5] 吴晓栋, 宋梓豪, 王伟, 等. 气凝胶材料的研究进展[J]. 南京工业大学学报(自然科学版), 2020, 42(4): 405-451.
WU Xiaodong, SONG Zihao, WANG Wei, et al. Advances of aerogels materials[J]. Journal of Nanjing Tech University (Natural Science Edition), 2020, 42(4): 405-451.
[6] XIE J, NIU L, QIAO Y, et al. Impact energy absorption behavior of graphene aerogels prepared by different drying methods[J]. Materials and Design, 2022. DOI:10.1016/j.matdes.2022.110912.
[7] ZHENG MINGLIANG. The model and experiment for heat transfer characteristics of nanoporous silica aero-gel[J]. Korean Journal of Materials Research, 2020, 30(4): 155-159.
[8] ZIMMERMANN M V G, ZATTERA A J. Silica aerogel reinforced with cellulose nanofibers[J]. Journal of Porous Materials, 2021, 28(5): 1325-1333.
[9] 潘月磊, 张和平, 闫明远, 等. 二氧化硅气凝胶及其在保温隔热领域应用进展[J]. 化工进展, 2023, 42(1): 297-309.
doi: 10.16085/j.issn.1000-6613.2022-0512
PAN Yuelei, ZHANG Heping, YAN Mingyuan, et al. Silica aerogel and its application in the field of thermal insulation[J]. Chemical Industry and Engineering Progress, 2023, 42(1): 297-309.
doi: 10.16085/j.issn.1000-6613.2022-0512
[10] 范龄元, 张梅, 郭敏. 二氧化硅气凝胶的制备、氨基改性及低温吸附CO2性能研究进展[J]. 材料导报, 2022, 36(15): 5-12.
FAN Lingyuan, ZHANG Mei, GUO Min. Preparation and amino modification of silica aerogel and its low temperature adsorption of CO2: a review[J]. Materials Reports, 2022, 36(15): 5-12.
[11] 杨景锋, 王齐华, 王廷梅. 氧化铝气凝胶的合成与性能[J]. 无机材料学报, 2018, 33(3): 259-265.
doi: 10.15541/jim20170180
YANG Jingfeng, WANG Qihua, WANG Tingmei. Synthesis and property of alumina aerogel[J]. Journal of Inorganic Materials, 2018, 33(3): 259-265.
doi: 10.15541/jim20170180
[12] 温培刚, 巢雄宇, 袁武华, 等. 耐高温氧化铝气凝胶研究进展[J]. 材料导报, 2016, 30(15): 51-56.
WEN Peigang, CHAO Xiongyu, YUAN Wuhua, et al. Research progress in highly thermally stable alumina aerogels[J]. Materials Reports, 2016, 30(15): 51-56.
[13] YANG J, WANG Q, WANG T, et al. Facile one-step precursor-to-aerogel synthesis of silica-doped alumina aerogels with high specific surface area at elevated temperatures[J]. Journal of Porous Materials, 2017, 24(4): 889-897.
[14] HOU X, ZHANG R, FANG D. An ultralight silica-modified ZrO2-SiO2 aerogel composite with ultra-low thermal conductivity and enhanced mechanical strength[J]. Scripta Materialia, 2018, 143: 113-116.
[15] 朱伟卓, 吴幼青, 吴诗勇, 等. 氧化锆掺杂铝硅复合气凝胶耐热性能研究[J]. 功能材料, 2022, 53(7): 7102-7108.
doi: 10.3969/j.issn.1001-9731.2022.07.013
ZHU Weizhuo, WU Youqing, WU Shiyong, et al. Study on heat resistance of aluminum-silicon composite aerogel doped with zirconia[J]. Jorunal of Functional Materials, 2022, 53(7): 7102-7108.
[16] LIU B, LIU X, ZHAO X, et al. High-strength, thermal-stable ZrO2 aerogel from polyacetylace-tonatozirconium[J]. Chemical Physics Letters, 2019, 715: 109-114.
[17] 祖国庆, 沈军, 王文琴, 等. 耐高温核/壳结构TiO2/SiO2复合气凝胶的制备及其光催化性能[J]. 物理化学学报, 2015, 31(2): 360-368.
ZU Guoqing, SHEN Jun, WANG Wenqin, et al. Preparation of heat-resistant, core/shell nanostructured TiO2/SiO2 composite aerogels and their photocatalytic properties[J]. Acta Physico-Chimica Sinica, 2015, 31(2): 360-368.
[18] WANG H, ZHANG X, WANG N, et al. Ultralight, scalable, and high-temperature-resilient ceramic nanofiber sponges[J]. Science Advances, 2017. DOI:10.1126/sciadv.1603170.
[19] LUO J, WANG H. Preparation, thermal insulation and flame retardance of cellulose nanocrystal aerogel modified by TiO2[J]. International Journal of Heat and Technology, 2018, 36(2): 614-618.
[20] PATIL S P, SHENDYE P, MARKERT B. Mechanical properties and behavior of glass fiber-reinforced silica aerogel nanocomposites: insights from all-atom simulations[J]. Scripta Materialia, 2020, 177: 65-68.
[21] SUN W, FANG Y, WU L. Preparation and properties of down feather fibers reinforced cellulose composite aerogel[J]. Journal of Porous Materials, 2022. DOI:10.1007/s10934-022-01331-0.
[22] 高庆福, 张长瑞, 冯坚, 等. 氧化硅气凝胶隔热复合材料研究进展[J]. 材料科学与工程学报, 2009, 27(2): 302-306.
GAO Qingfu, ZHANG Changrui, FENG Jian, et al. Progress of silica aerogel insulation composites[J]. Journal of Materials Science and Engineering, 2009, 27(2): 302-306.
[23] MALEKI H, DURÃES L, PORTUGAL A. An overview on silica aerogels synthesis and different mechanical reinforcing strategies[J]. Journal of Non-Crystalline Solids, 2014, 385: 55-74.
[24] 张训虎, 翟萍, 栾强, 等. 溶胶凝胶法制备SiO2气凝胶/石英纤维增强石英复合材料及其性能表征[J]. 硅酸盐通报, 2018, 37(1): 221-224.
ZHANG Xunhu, ZHAI Ping, LUAN Qiang, et al. Characterization of SiO2 aerogel/SiO2 fiber composites prepared by sol-gel method[J]. Bulletin of the Chinese Ceramic Society, 2018, 37(1): 221-224.
[25] 华媛. SiO2纳米纤维/纳米颗粒复合材料的制备及性能探究[D]. 上海: 东华大学, 2022:35-37.
HUA Yuan. Study on preparation and properties of silica nanofiber/ nanoparticle composites[D]. Shanghai: Donghua University, 2022:35-37.
[26] HIRANO S I, YOGO T, SAKAMOTO W, et al. In situ processing of nano crystalline oxide particles/polymer hybrid[J]. Journal of Sol-Gel Science and Technology, 2003, 26(1-3): 35-41.
[27] SU L, WANG H J, NIU M, et al. Anisotropic and hierarchical SiC@SiO2 nanowire aerogel with exceptional stiffness and stability for thermal superinsulation[J]. Science Advances, 2020.DOI:10.1126/sciadv.aay6689.
[28] 张欣欣. 弹性抗压ZrO2纳米纤维基气凝胶的构建及隔热性能研究[D]. 上海: 东华大学, 2022:37-39.
ZHANG Xinxin. Elastic and strong zirconia nanofibrous based aerogels: construction and thermal insulation application[D]. Shanghai: Donghua University, 2022:37-39.
[29] WANG W, ZHAO Y, YAN W, et al. Preparation of the novel B4C-SiC composite aerogel with high compressive strength and low thermal conductivity[J]. Journal of Porous Materials, 2021, 28(3): 703-710.
[30] GU H, HOU X, ZHANG R, et al. Novel high-temperature-resistant Y2SiO5 aerogel with ultralow thermal conductivity[J]. International Journal of Applied Ceramic Technology, 2019, 16(6): 2393-2397.
[31] ZHANG X, LIU C, ZHANG X, et al. Super strong, shear resistant, and highly elastic lamellar structured ceramic nanofibrous aerogels for thermal insulation[J]. Journal of Materials Chemistry A, 2021, 9(48): 27415-27423.
[32] YANG M, LIXIA Y, CHEN Z, et al. Flexible electrospun strawberry-like structure SiO2 aerogel nanofibers for thermal insulation[J]. Ceramics International, 2022. DOI:10.1016/j.ceramint.2022.11.076.
[33] 王航, 庄旭品, 董锋, 等. 溶液喷射纺纳米纤维制备技术及其应用进展[J]. 纺织学报, 2018(7): 165-173.
WANG Hang, ZHUANG Xupin, DONG Feng, et al. Preparation technology and application progress of solution blown nanofibers[J]. Journal of Textile Research, 2018(7): 165-173.
[34] GAO Y, ZHANG J, SU Y, et al. Recent progress and challenges in solution blow spinning[J]. Materials Horizons, 2021, 8(2): 426-446.
doi: 10.1039/d0mh01096k pmid: 34821263
[35] 高庆福. 纳米多孔SiO2、Al2O3气凝胶及其隔热复合材料研究[D]. 长沙: 国防科技大学, 2009:42-46.
GAO Qingfu. Nano-porous silica, alumina aerogels and thermal super-insulation composites[D]. Changsha: National University of Defense Technology, 2009:42-46.
[36] 韦丽, 范金娟, 王云英, 等. SiO2气凝胶及纤维复合SiO2气凝胶隔热材料表征方法[J]. 失效分析与预防, 2016, 11(3): 196-202.
WEI Li, FAN Jinjuan, WANG Yunying, et al. Development situation of characterization methods of SiO2 aerogel and fiber composites SiO2 aerogel insula-tion[J]. Failure Analysis and Prevention, 2016, 11(3): 196-202.
[37] YU H, TONG Z, ZHANG B, et al. Thermal radiation shielded, high strength, fire resistant fiber/nanorod/aerogel composites fabricated by in-situ growth of TiO2 nanorods for thermal insulation[J]. Chemical Engineering Journal, 2021.DOI:10.1016/j.cej.2021.129342.
[38] ZHANG H, FENG J, LI L, et al. Preparation of a carbon fibre-reinforced carbon aerogel and its application as a high-temperature thermal insulator[J]. RSC Advances, 2022, 12(22): 13783-13791.
doi: 10.1039/d2ra00276k pmid: 35541432
[39] 郝栋连, 冯慧, 苏悦, 等. 高温隔热材料的研究现状及发展趋势[J]. 合成纤维工业, 2022, 45(1): 68-73.
HAO Donglian, FENG Hui, SU Yue, et al. Research status and development trend of high temperature thermal insulation materials[J]. China Synthetic Fiber Industry, 2022, 45(1): 68-73.
[1] 陈锦苗, 李纪伟, 陈萌, 宁新, 崔爱华, 王娜. 壳聚糖微纳米纤维复合抗菌空气滤材的制备及其性能[J]. 纺织学报, 2024, 45(05): 19-26.
[2] 冯颖, 于汉哲, 张宏, 李可心, 马标, 董鑫, 张建伟. 静电纺壳聚糖基纳米纤维的制备及其在水处理中应用研究进展[J]. 纺织学报, 2024, 45(05): 218-227.
[3] 栗志坤, 于影, 左雨欣, 史豪秦, 金玉珍, 陈洪立. 聚丙烯腈/二硫化钼复合薄膜的挠曲电效应分析及其应用[J]. 纺织学报, 2024, 45(05): 27-34.
[4] 梁文静, 吴俊贤, 何崟, 刘皓. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(04): 15-23.
[5] 李朝威, 成悦, 苏新, 陈鹏飞, 李大伟, 付译鋆. 聚偏氟乙烯纳米纤维的结构调控及其在生物医学领域应用研究进展[J]. 纺织学报, 2024, 45(04): 229-237.
[6] 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32.
[7] 贾琳, 董晓, 王西贤, 张海霞, 覃小红. 聚己内酯/MgO复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(04): 59-66.
[8] 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75.
[9] 杨琪, 邓南平, 程博闻, 康卫民. 树枝状磺化聚醚砜纤维基复合固态电解质的制备及其性能[J]. 纺织学报, 2024, 45(03): 1-10.
[10] 赵美奇, 陈莉, 钱现, 李晓娜, 杜迅. 用于铜离子检测的静电纺纤维膜制备及其性能[J]. 纺织学报, 2024, 45(03): 11-18.
[11] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[12] 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64.
[13] 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16.
[14] 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25.
[15] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!