纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 89-97.doi: 10.13475/j.fzxb.20221201501
ZHU Lingyun1,2(), WANG Chenyu2, ZHAO Yueying2
摘要:
为解决自动化生产线上织物表面瑕疵检测准确率低和计算速度慢的问题,利用织物表面具有周期纹理的特性提出了一种改进的RANSac检测方法,即多度量多模型图像投票。首先将输入图像裁剪为尺寸一致的子图,计算出子图多维度量的输出值矩阵;然后与改进RANSac计算出的无瑕疵背景的多维度量标准值分别对应作差,采用投票得出每张子图的基础分;再将其在4个记数模型下得到的综合评分排序,根据顺序和偏移量在输出端得到外点所代表的瑕疵子图。实验结果表明:在自采样的织物瑕疵数据集上,选择单度量和单模型的预测精度平均可达到90.9%,平均预测时间达到0.139 s,综合多度量多模型投票的平均预测精度可达到92.7%。该算法不需要大量前期数据进行训练,适用于纯色和条纹状织物的实时表面缺陷检测。
中图分类号:
[1] | 李晓钟, 胡珊. 中国纺织产业在全球价值链的地位及升级研究[J]. 国际经济合作, 2018(3):44-49. |
LI Xiaozhong, HU Shan. Research on the status and upgrading of Chinese textile industry in global value chain[J]. World Economy and Trade, 2018(3):44-49. | |
[2] | SRINIVASAN K, DASTOOR P H, RADHAKRISHNAIAH P, et al. FDAS: a knowledge-based framework for analysis of defects in woven textile structures[J]. The Journal of the Textile Institute, 1992, 83(3): 431-448. |
[3] |
吕文涛, 林琪琪, 钟佳莹, 等. 面向织物疵点检测的图像处理技术研究进展[J]. 纺织学报, 2021, 42(11):197-206.
doi: 10.13475/j.fzxb.20200702710 |
LÜ Wentao, LIN Qiqi, ZHONG Jiaying, et al. Research progress of image processing technology for fabric defect detection[J]. Journal of Textile Research, 2021, 42(11):197-206.
doi: 10.13475/j.fzxb.20200702710 |
|
[4] |
田宸玮, 王雪纯, 杨嘉能, 等. 织物瑕疵检测方法研究进展[J]. 计算机工程与应用, 2020, 56(12):8-18.
doi: 10.3778/j.issn.1002-8331.2002-0169 |
TIAN Chenwei, WANG Xuechun, YANG Jianeng, et al. Research progress on fabric defect detection me-thods[J]. Computer Engineering and Applicationss, 2020, 56(12):8-18. | |
[5] |
赵艳, 左保齐. 机器视觉在织物疵点检测上的应用研究综述[J]. 计算机工程与应用, 2020, 56(2):11-17.
doi: 10.3778/j.issn.1002-8331.1908-0193 |
ZHAO Yan, ZUO Baoqi. Analysis on application of machine vision in fabric defect detection[J]. Computer Engineering and Applicationss, 2020, 56(2):11-17. | |
[6] | 师昕, 赵雪青. 基于视觉感知机制的织物疵点轮廓检测[J]. 计算机系统应用, 2021, 30(11):323-328. |
SHI Xin, ZHAO Xueqing. Fabric defect contour detection based on visual mechanism[J]. Computer Systems & Applications, 2021, 30(11):323-328. | |
[7] | ZHU D, PAN R, GAO W,et al. Yarn-dyed fabric defect detection based on autocorrelation function and GLCM[J]. Autex Research Journal, 2015, 15(3): 226-232. |
[8] | 狄岚, 杨达, 梁久祯, 等. 基于图元分割与Gabor滤波的织物瑕疵检测方法[J]. 纺织学报, 2020, 41(9):59-66. |
DI Lan, YANG Da, LIANG Jiuzhen, et al. Fabric defect detection method based on primitive segmentation and Gabor filtering[J]. Journal of Textile Research, 2020, 41(9):59-66. | |
[9] | 谢景洋, 王巍, 刘婷. 基于YOLO v3算法的不同主干网络对织物瑕疵检测[J]. 测控技术, 2021, 40(3):61-66. |
XIE Jingyang, WANG Wei, LIU Ting. Fabric surface defect detection based on YOLO v3 with different backbone networks[J]. Measurement & Control Technology, 2021, 40(3):61-66. | |
[10] |
陈金广, 李雪, 邵景峰, 等. 改进YOLOv5网络的轻量级服装目标检测方法[J]. 纺织学报, 2022, 43(10):155-160.
doi: 10.13475/j.fzxb.20210809306 |
CHEN Jinguang, LI Xue, SHAO Jingfeng, et al. Lightweight clothing detection method based on an improved YOLOv5 network[J]. Journal of Textile Research, 2022, 43(10):155-160.
doi: 10.13475/j.fzxb.20210809306 |
|
[11] | 蔡兆信, 李瑞新, 戴逸丹, 等. 基于Faster RCNN的布匹瑕疵识别系统[J]. 计算机系统应用, 2021, 30(2):83-88. |
CAI Zhaoxin, LI Ruixin, DAI Yidan, et al. Fabric defect recognition system based on faster RCNN[J]. Computer Systems & Applications, 2021, 30(2):83-88. | |
[12] | 宫丽娜, 姜淑娟, 姜丽. 软件缺陷预测技术研究进展[J]. 软件学报, 2019, 30(10):3090-3114. |
GONG Lina, JIANG Shujuan, JIANG Li. Research progress of software defect prediction[J]. Journal of Software, 2019, 30(10):3090-3114. | |
[13] |
李勇, 黄志球, 王勇, 等. 数据驱动的软件缺陷预测研究综述[J]. 电子学报, 2017, 45(4):982-988.
doi: 10.3969/j.issn.0372-2112.2017.04.030 |
LI Yong, HUANG Zhiqiu, WANG Yong, et al. Survey on data driven software defects prediction[J]. Acta Electronica Sinica, 2017, 45(4):982-988.
doi: 10.3969/j.issn.0372-2112.2017.04.030 |
|
[14] | 赵谦, 童申鑫, 贺顺, 等. 改进的SURF-RANSAC图像匹配算法[J]. 计算机工程与设计, 2021, 42(10):2902-2909. |
ZHAO Qian, TONG Shenxin, HE Shun, et al. Improved SURF-RANSAC image matching algorithm[J]. Computer Engineering and Design, 2021, 42(10):2902-2909. | |
[15] | DEJAEGER K, VERBEKE W, MARTENS D, el al. Data mining techniques for software effort estimation: a comparative study[J]. IEEE Transactions on Software Engineering. 2012, 38(2): 375-397. |
[1] | 池盼盼, 梅琛楠, 王焰, 肖红, 钟跃崎. 基于边缘填充的单兵迷彩伪装小目标检测[J]. 纺织学报, 2024, 45(01): 112-119. |
[2] | 陈金广, 李雪, 邵景峰, 马丽丽. 改进YOLOv5网络的轻量级服装目标检测方法[J]. 纺织学报, 2022, 43(10): 155-160. |
[3] | 王晓华, 姚炜铭, 王文杰, 张蕾, 李鹏飞. 基于改进YOLO深度卷积神经网络的缝纫手势检测[J]. 纺织学报, 2020, 41(04): 142-148. |
[4] | 刘正东, 刘以涵, 王首人. 西装识别的深度学习方法[J]. 纺织学报, 2019, 40(04): 158-164. |
[5] | 徐增波 周胜. 基于尺度-空间极值的织物起球目标检测[J]. 纺织学报, 2013, 34(7): 45-51. |
|