纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 16-22.doi: 10.13475/j.fzxb.20221203601

• 纤维材料 • 上一篇    下一篇

海藻酸钠/纳米蒙脱土纤维制备及其增强增韧机制

胥家辉1, 郭肖青1, 王伟1, 王怀芳1, 张传杰1,2,3(), 宫兆庆3   

  1. 1.青岛大学 纺织服装学院, 山东 青岛 266071
    2.青岛大学威海创新研究院, 山东 威海 264200
    3.威海市织物功能助剂工程技术中心, 山东 威海 264500
  • 收稿日期:2022-12-20 修回日期:2024-02-28 出版日期:2024-06-15 发布日期:2024-06-15
  • 通讯作者: 张传杰(1982—),男,副教授,博士。主要研究方向为功能纤维及纺织品。E-mail:jcuse@163.com
  • 作者简介:胥家辉(1997—),男,硕士生。主要研究方向为功能纤维及纺织品。
  • 基金资助:
    山东省自然科学基金项项目(ZR2022QE182)

Preparation of alginate nano montmorillonite modified fiber and its strengthening and toughening mechanisms

XU Jiahui1, GUO Xiaoqing1, WANG Wei1, WANG Huaifang1, ZHANG Chuanjie1,2,3(), GONG Zhaoqing3   

  1. 1. College of Textile & Clothing, Qingdao University, Qingdao, Shandong 266071, China
    2. Weihai Innovation Institute of Qingdao University, Weihai, Shandong 264200, China
    3. Weihai Textile Functional Additives Engineering Technology Center, Weihai, Shandong 264500, China
  • Received:2022-12-20 Revised:2024-02-28 Published:2024-06-15 Online:2024-06-15

摘要:

海藻纤维的断裂强度低、伸长率差一直是限制其广泛应用的主要原因。针对该问题,对海藻纤维进行改性,将纳米蒙脱土(MMT)与海藻酸钠共混制备纺丝原液,以CaCl2为凝固浴,通过湿法纺丝法制备海藻酸纳/纳米蒙脱土纤维,借助透射电子显微镜、扫描电子显微镜、红外光谱仪、X射线衍射仪和热重分析仪等对其微观形貌及结构进行表征与分析,通过单纤维强力仪测试其断裂强度、断裂伸长率等物理力学性能及热稳定性,研究蒙脱土溶胀时间及添加量对其性能的影响。结果表明:当MMT溶胀120 h、质量分数为0.1%时,MMT在纺丝液中分布较为均匀;与纯海藻纤维的力学性能相比,改性后纤维的断裂强度由1.32 cN/dtex提高到3.01 cN/dtex,提高率高达228%;断裂伸长率由4.67%增加到10.07%,同时MMT的加入没有明显改变海藻纤维的化学结构与结晶结构,对纤维的热稳定性能有一定的提高。

关键词: 蒙脱土, 海藻纤维, 增强增韧, 插层, 海藻酸钠, 湿法纺丝

Abstract:

Objective The poor breaking strength and elongation at break are the main reasons that limit the wide applications of alginate fibers. Many approaches such as cross-linking, grafting and blending modifications have been developed to improve the physical and mechanical properties of alginate fibers. In this research, the reinforcing mechanisms of montmorillonite (MMT) were studied, and nano MMT was blended into sodium alginate(SA) solution to prepare modified calcium alginate(CA) fibers using wet spinning technique aiming to improve the mechanical properties of the alginate fibers.

Method Montmorillonite (MMT) suspension was blended with sodium SA aqueous solution to prepare the mixed spinning solution, before the SA/MMT fibers were prepared by wet spinning method using CaCl2 solution as the coagulation bath. The microscopic morphologies and structural characteristics of the prepared fibers were characterized by using TEM, SEM, FT-IR, XRD and the mechanical properties and thermal stabilities of different fibers were tested by using single fiber tensile tester and thermogravimetric analyzer respectively to study the influences of different swelling time and contents of MMT on the corresponding fiber properties.

Results The layer distance of MMT was increased desirably after swelling for 120 h, and the swollen MMT was well dispersed in the spinning solution, which provided favorable conditions for SA to get into the macromolecular layers of MMT and eventually peel off the layers of MMT. The breaking strength of the CA/MMT fibers containing 0.1% MMT that swelled for 120 h was the best. This phenomenon is owing to the intercalation of SA into the uniformly dispersed MMT in the spinning solution, which is conducive to the combination of MMT and SA. Meanwhile, the result of the elongation at break was similar to that of the breaking strength of fibers, which could be explained that the formed hydrogen bonds among the hydroxyl groups on MMT and the ionized carboxyl groups on SA were conductive to overcoming stress concentration and increasing the crystallinity of SA molecules, and toughening the fibers. Compared with SA fibers,the addition of MMT made the fiber surface gully. Evidence showed that the MMT has been successfully loaded onto the CA fiber. The reason for this is that MMT in SA exists as a monolithic structure, which makes the viscosity of the spinning liquid increase and the entanglement point increase, affecting the SA macromolecular flow, and finally the spinning liquid bears a stronger tensile effect during spinning and increasing the friction during fiber formation. The hydrogen bond interaction between the hydroxyl group on the MMT and the ionized carboxyl group on the SA was confirmed, and the Si—O stretching vibration peak from MMT was also identified in the spectrum of SA/MMT fibers, indicating the successful blending of MMT and SA. The addition of MMT increased the crystallinity of CA fibers hence strengthening and toughening the fiber, and the test results corroborated with the above conclusions. The TG results indicated that the addition of MMT also improves the thermal stability of the fibers. The decomposition temperatures of the two types of fibers in the three stages were quite similar, but the carbon residue rate of CA fibers blended with MMT was higher than that of CA fiber, indicating that the addition of MMT can improve the thermal stability of the fibers.

Conclusion It is found feasible to use inorganic nanoclay for toughening the alginate fibers. Hydrogen bonding occurs between MMT and calcium alginate, increasing the intermolecular spacing. The addition of MMT did not obviously changes the chemical structure and crystalline structure of alginate fibers, making the thermal stability properties of alginate fibers improved to some extent.

Key words: montmorillonite, alginate fiber, strengthening and toughening, intercalation, sodium alginate, wet spinning

中图分类号: 

  • TQ341

图1

MMT悬浮液和SA/MMT纺丝液的微观形貌"

图2

MMT质量分数与溶胀时间对纤维断裂强度与断裂伸长率的影响"

图3

SA和SA/MMT纤维的扫描电镜照片(×1 200)"

图4

SA纤维、SA/MMT纤维与MMT的红外光谱图"

图5

MMT、SA纤维与SA/MMT纤维的X射线衍射谱图"

图6

SA纤维热分解曲线图"

图7

MMT对SA纤维的增强增韧机制图"

[1] 王锐, 莫小慧, 王晓东. 海藻酸盐纤维应用现状及发展趋势[J]. 纺织学报, 2014, 35 (2): 145-152.
WANG Rui, MO Xiaohui, WANG Xiaodong. Application status and development trend of alginate fiber[J]. Journal of Textile Research, 2014, 35 (2): 145-152.
[2] 秦益民. 海藻酸盐纤维的生物活性和应用功效[J]. 纺织学报, 2018, 39 (4): 175-180.
QIN Yimin. Biological activity and application efficacy of alginate fiber[J]. Journal of Textile Research, 2018, 39 (4): 175-180.
[3] 刘秀龙, 王云仪. 海藻纤维的制备及其在纺织服装中的应用研究进展[J]. 现代纺织技术, 2022, 30(1): 26-35.
doi: 10.19398/j.att.202103041
LIU Xiulong, WANG Yunyi. Research progress in the preparation of seaweed fiber and its application in textiles and clothing[J]. Modern Textile Technology, 2022, 30 (1): 26-35.
[4] 郭静, 陈前赫. 海藻纤维制备技术研究进展[J]. 合成纤维工业, 2011, 34 (5): 41-44.
GUO Jing, CHEN Qianhe. Research progress in preparation technology of seaweed fiber[J]. Synthetic Fiber Industry, 2011, 34 (5): 41-44.
[5] 雷明月. SA纤维的耐盐改性及性能研究[D]. 武汉: 武汉纺织大学, 2018:33-36.
LEI Mingyue. Study on salt resistance modification and performance of SA fiber[D]. Wuhan: Wuhan Textile University, 2018:33-36.
[6] WANG Y, CHEN H, CUI L, et al. Toughen and strengthen alginate fiber by incorporation of polyethylene glycol grafted cellulose nanocrystals[J]. Cellulose, 2022, 29 (9): 5021-5035.
[7] FILIZ Tezcan, EBRU Günister, GONUL Ozen, et al. Biocomposite films based on alginate and organically modified clay[J]. International Journal of Biological Macromolecules, 2012, 50 (4): 1165-1168.
doi: 10.1016/j.ijbiomac.2012.01.006 pmid: 22269346
[8] TAN L, YAO T, XIA Y, et al. Preparation and characterization of calcium alginate/nano-TiO2 blend fiber[J]. Synthetic Fiber Industry, 2013, 36 (2): 6-8.
[9] 党丹旸, 崔灵燕, 王亮, 等. 纤维素纳米纤维/纳米蒙脱土复合气凝胶制备及其结构与性能[J]. 纺织学报, 2020, 41 (2): 1-6.
DANG Danyang, CUI Lingyan, WANG Liang, et al. Preparation, structure and properties of cellulose nanofiber/nano montmorillonite composite aerogel[J]. Journal of Textile Research, 2020, 41 (2): 1-6.
[10] 王芳, 马刚, 于鹏达, 等. 芳纶基环氧树脂/MMT复合材料的制备及性能[J]. 热固性树脂, 2022, 37(4): 9-14.
WANG Fang, MA Gang, YU Pengda, et al. Preparation and properties of aramid based epoxy resin/MMT composites[J]. Thermosetting Resin, 2022, 37(4): 9-14.
[11] SU X, CHEN B. Tough resilient and pH-sensitive interpenetrating polyacrylamide/alginate/montmorillonite nanocomposite hydrogels[J]. Carbohydr Polym, 2018, 197: 497-507.
[12] 王风军. SA/无机纳米复合纤维的制备与性能研究[D]. 青岛: 青岛大学, 2012:39-42.
WANG Fengjun. Study on the preparation and properties of SA/inorganic nanocomposite fiber[D]. Qingdao: Qingdao University, 2012:39-42.
[13] ALI Olad, MAHYAR Pourkhiyabi, HAMED Gharekhani, et al. Semi-IPN superabsorbent nanocomposite based on sodium alginate and montmorillonite: reaction parameters and swelling characteristics[J]. Carbohydrate Polymers, 2018, 190: 295-306.
doi: S0144-8617(18)30256-X pmid: 29628250
[14] BRAHMI Mohamed, ESSIFI Kamal, ELBACHIRI Ali, et al. Adsorp-tion of sodium alginate onto sodium montmorillonite[J]. Materials Today: Proceedings, 2021, 45(P8): 7785-7793.
[15] MITHILESH Yadav, KYONG Yop Rhee. Superabsorbent nanocomposite (alginate-g-PAMPS/MMT): synthesis, characterization and swelling behavior[J]. Carbohydrate Polymers, 2012, 90(1): 165-173.
doi: 10.1016/j.carbpol.2012.05.010 pmid: 24751026
[16] YAN M, SHI J, TANG S, et al. Strengthening and toughening sodium alginate fibers using a dynamically cross-linked network of inorganic nanoparticles and sodium alginate through the hydrogen bonding stra-tegy[J]. New Journal of Chemistry, 2021, 45(23): 10362-10372.
[1] 关振虹, 李丹, 宋金苓, 冷向阳, 宋西全. 易染间位芳纶的制备及其性能[J]. 纺织学报, 2023, 44(06): 28-32.
[2] 狄纯秋, 郭静, 管福成, 相玉龙, 单继成. 双金属离子交联海藻酸盐复合相变纤维的制备与性能[J]. 纺织学报, 2023, 44(05): 54-62.
[3] 孙将皓, 邵彦峥, 魏春艳, 王迎. 海藻酸钠/改性氧化石墨烯微孔气凝胶纤维制备与吸附性能[J]. 纺织学报, 2023, 44(04): 24-31.
[4] 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86.
[5] 杜璇, 丁长坤, 岳程飞, 苏杰梁, 闫旭焕, 程博闻. 凝固浴对再生胶原纤维结构与性能的影响[J]. 纺织学报, 2022, 43(09): 58-63.
[6] 杨春利, 周伟贤, 梁京龙, 林桂圳, 刘杰, 倪延朋, 刘云, 商胜龙, 朱平. 磁场诱导结构生色海藻酸钙纤维的快速制备及其性能[J]. 纺织学报, 2022, 43(09): 64-69.
[7] 薛超, 朱浩, 杨晓川, 任煜, 刘婉婉. 聚氨酯基碳纳米管-液态金属导电纤维的制备及其性能[J]. 纺织学报, 2022, 43(07): 29-35.
[8] 陈子晗, 姚勇波, 生俊露, 颜志勇, 张玉梅, 王华平. 纤维素/海藻酸钙共混纤维的制备及其性能[J]. 纺织学报, 2021, 42(12): 15-20.
[9] 陈纤, 李猛猛, 赵昕, 董杰, 滕翠青. 纳米芳纶气凝胶纤维的制备与微观结构调控[J]. 纺织学报, 2021, 42(11): 17-23.
[10] 田星, 沙源, 王兵兵, 夏延致. 乌贼墨黑色素着色海藻纤维的制备与表征[J]. 纺织学报, 2021, 42(10): 22-26.
[11] 何聚, 刘晓辉, 苏晓伟, 林生根, 任元林. 星型无卤阻燃剂改性粘胶纤维的制备及其性能[J]. 纺织学报, 2021, 42(10): 34-40.
[12] 陆振乾, 杨雅茹, 荀勇. 纤维对水泥基复合材料性能影响研究进展[J]. 纺织学报, 2021, 42(04): 177-183.
[13] 王慧云, 王萍, 李媛媛, 张岩. 中空多孔异形聚丙烯腈纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 50-55.
[14] 殷聚辉, 郭静, 王艳, 曹政, 管福成, 刘树兴. 基于海藻酸钠/磷虾蛋白的支架材料制备及其性能[J]. 纺织学报, 2021, 42(02): 53-59.
[15] 马跃, 郭静, 殷聚辉, 赵秒, 宫玉梅. 纤维素/氧化纤维素/南极磷虾蛋白复合抗菌纤维的制备与表征[J]. 纺织学报, 2020, 41(11): 34-40.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!