纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 210-218.doi: 10.13475/j.fzxb.20221204802
GAO Zhihao1,2, NING Xin1,2,3, MING Jinfa1,2,3()
摘要:
为提高生物质基碳气凝胶的电化学性能,促进其在储能领域的产业化应用,对储能器件领域用生物质基碳气凝胶材料进行了系统评述。首先介绍了目前制备生物质基碳气凝胶的主要方法,即凝胶炭化法、水热炭化法和直接炭化法,并对比分析了3种方法的优缺点。分别总结了3类生物质基碳气凝胶在超级电容器和锂离子电池等储能器件中的最新研究进展,包括未经改性的纯生物质基碳气凝胶以及通过金属掺杂和杂原子掺杂改性的复合生物质基碳气凝胶,并重点阐述了其材料设计和微观结构与电化学性能之间的关系。最后在对研究现状进行深入分析的基础上,展望了生物质基碳气凝胶未来的研究方向和发展前景,指出提高原料利用率、改善整体环保性以及调控结构性能将会成为今后的热点方向,而生物质基碳气凝胶也势必将作为一种新型的绿色电化学能源材料而得到蓬勃发展。
中图分类号:
[1] | SUN H Y, XU Z, GAO C. Multifunctional, ultra-flyweight, synergistically assembled carbon aerogels[J]. Advanced Materials, 2013, 25(18): 2554-2560. |
[2] | LI Y, LIU X F, NIE X Y, et al. Multifunctional organic-inorganic hybrid aerogel for self-cleaning, heat-insulating, and highly efficient microwave absorbing material[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201807624. |
[3] | 骆晓蕾, 刘琳, 姚菊明. 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(1): 1-8. |
LUO Xiaolei, LIU Lin, YAO Juming. Preparation and study of pure biomass cellulose aerogels for flame retardancy[J]. Journal of Textile Research, 2022, 43(1): 1-8. | |
[4] | PEKALA R W. Organic aerogels from the polycondensation of resorcinol with formaldehyde[J]. 1989, 24(9): 3221-3227. |
[5] | XU Y L, REN B, WANG S S, et al. Carbon aerogels with oxygen-containing surface groups for use in supercapacitors[J]. Solid State Ionics, 2019, 339: 1-7. |
[6] | SCHWAN M, RATKE L. Flexibilisation of resorcinol-formaldehyde aerogels[J]. Journal of Materials Chemistry A, 2013(43): 13462-13468. |
[7] | 杨喜, 刘杏娥, 马建锋, 等. 生物质基碳气凝胶制备及应用研究[J]. 材料导报, 2017, 31(7): 45-53. |
YANG Xi, LIU Xing'e, MA Jianfeng, et al. Fabrication and application of carbon aerogel derived from biomass materials[J]. Materials Reports, 2017, 31(7): 45-53. | |
[8] | SAM D K, SAM E K, DURAIRAJ A, et al. Synthesis of biomass-based carbon aerogels in energy and sustainability[J]. Carbohydrate Research, 2020. DOI: 10.1016/j.carres.2020.107986. |
[9] |
张洁, 段荣帅, 李子江, 等. 生物质基碳气凝胶的研究进展[J]. 生物质化学工程, 2021, 55(1): 91-99.
doi: 10.3969/j.issn.1673-5854.2021.01.013 |
ZHANG Jie, DUAN Rongshuai, LI Zijiang, et al. Research advances on biomass derived carbon aerogel[J]. Biomass Chemical Engineering, 2021, 55(1): 91-99.
doi: 10.3969/j.issn.1673-5854.2021.01.013 |
|
[10] |
DU H S, LIU W, ZHANG M M, et al. Cellulose nanocrystals and cellulose nanofibrils based hydrogels for biomedical applications[J]. Carbohydrate Polymers, 2019, 209: 130-144.
doi: S0144-8617(19)30020-7 pmid: 30732792 |
[11] | WANG X Y, ZHANG Y, JIANG H, et al. Fabrication and characterization of nano-cellulose aerogels via supercritical CO2 drying technology[J]. Materials Letters, 2016, 183: 179-182. |
[12] | ZHANG T, YUAN D S, GUO Q, et al. Preparation of a renewable biomass carbon aerogel reinforced with sisal for oil spillage clean-up: inspired by green leaves to green Tofu[J]. Food & Bioproducts Processing, 2019, 114: 154-162. |
[13] | WANG Z G, YOKOYAMA T, CHANG H M, et al. Dissolution of beech and spruce milled woods in LiCl/DMSO[J]. Journal of Agricultural & Food Chemistry, 2009, 57(14): 6167-6170. |
[14] |
LUO W, WANG B, HERON C G, et al. Pyrolysis of cellulose under ammonia leads to nitrogen-doped nanoporous carbon generated through methane formation[J]. Nano Letters, 2014, 14(4): 2225-2229.
doi: 10.1021/nl500859p pmid: 24679142 |
[15] | SHAQSI A Z, SOPIAN K, HINAI A. Review of energy storage services, applications, limitations, and benefits[J]. Energy Reports, 2020, 6: 288-306. |
[16] |
WANG F X, WU X W, YUAN X H, et al. Latest advances in supercapacitors: from new electrode materials to novel device designs[J]. Chemical Society Reviews, 2017, 46(22): 6816-6854.
doi: 10.1039/c7cs00205j pmid: 28868557 |
[17] | CHENG P, LI T, YU H, et al. Biomass-derived carbon fiber aerogel as a binder-free electrode for high-rate supercapacitors[J]. The Journal of Physical Chemistry C, 2016, 120(4): 2079-2086. |
[18] | YANG X, KONG L Y, CAO M, et al. Porous nanosheets-based carbon aerogel derived from sustainable rattan for supercapacitors application[J]. Industrial Crops and Products, 2020. DOI: 10.1016/j.indcrop.2020.112100. |
[19] | WANG T H, ZHANG W T, YANG S J, et al. Regenerated bamboo-derived cellulose fibers/RGO-based composite for high-performance supercapacitor electrodes[J]. Advances in Materials Science and Engineering, 2020. DOI: 10.1088/1757-899X/735/1/012027. |
[29] | XUE Q, SUN J F, HUANG Y, et al. Recent progress on flexible and wearable supercapacitors[J]. Small, 2017. DOI: 10.1002/smll.201701827. |
[30] | GAO Y F, ZHENG S H, FU H L, et al. Three-dimensional nitrogen doped hierarchically porous carbon aerogels with ultrahigh specific surface area for high-performance supercapacitors and flexible micro-upercapacitors[J]. Carbon, 2020, 168: 701-709. |
[31] |
孔雪琳, 卢芸, 叶贵超, 等. 纳米纤维素基多层级孔道结构碳气凝胶的制备及在锂电池中的应用[J]. 高等学校化学学报, 2017, 38(11): 1941-1946.
doi: 10.7503/cjcu20170126 |
KONG Xuelin, LU Yun, YE Guichao, et al. Nanofibrillated cellulose derived hierarchical porous carbon aerogels: efficient nnode material for Lithium ion battery[J]. Chemical Journal of Chinese Universities, 2017, 38(11): 1941-1946.
doi: 10.7503/cjcu20170126 |
|
[32] | WANG L P, SCHUTZ C, SALAZAR-ALVAREZ G, et al. Carbon aerogels from bacterial nanocellulose as anodes for lithium ion batteries[J]. Rsc Advances, 2014, 4(34): 17549-17554. |
[33] | CHE Y, ZHU X Y, LI J J, et al. Simple synthesis of MoO2/carbon aerogel anodes for high performance lithium ion batteries from seaweed biomass[J]. Rsc Advances, 2016, 6: 106230-106236. |
[34] | LI D H, WANG Y, SUN Y Y, et al. Turning gelidium amansii residue into nitrogen-doped carbon nanofiber aerogel for enhanced multiple energy storage[J]. Carbon, 2018, 137: 31-40. |
[35] | YE G C, ZHU X Y, CHEN S, et al. Nanoscale engineering of nitrogen-doped carbon nanofiber aerogels for enhanced lithium ion storage[J]. Journal of Materials Chemistry A, 2017, 5: 8247-8254. |
[36] | KUBICKA M, BAKIERSKA M, CHUDZIK K, et al. Nitrogen-doped carbon aerogels derived from starch biomass with improved electrochemical properties for Li-ion batteries[J]. International Journal of Molecular Sciences, 2021. DOI: 10.3390/ijms22189918. |
[37] | ZHANG J L, ZHANG L J, YANG S L, et al. Facile strategy to produce N-doped carbon aerogels derived from seaweed for lithium-ion battery anode[J]. Journal of Alloys and Compounds, 2017, 701: 256-261. |
[38] | LIU Y, CHEN J S, LIU Z K, et al. Necklace-like ferroferric oxide (Fe3O4) nanoparticle/carbon nanofibril aerogels with enhanced Lithium storage by carbonization of ferric alginate[J]. Journal of Colloid and Interface Science, 2020, 576: 119-126. |
[39] | HOU G Y, LYU Z Y, TANG Y P, et al. Preparation of flexible composite electrode with bacterial cellu-lose (BC)-derived carbon aerogel supported low loaded NiS for methanol electrocatalytic oxidation[J]. International Journal of Hydrogen Energy, 2020, 45(32): 16049-16059. |
[40] | LIANG H W, WU Z Y, CHEN L F, et al. Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery[J]. Nano Energy, 2015, 11: 366-376. |
[41] | LI D H, CHANG G J, ZONG L, et al. From double-helix structured seaweed to S-doped carbon aerogel with ultra-high surface area for energy storage[J]. Energy Storage Materials, 2019, 17: 22-30. |
[42] | ZHU L, YOU L G, ZHU P H, et al. High performance Lithium-sulfur batteries with a sustainable and environmentally friendly carbon aerogel modified separator[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(1): 248-257. |
[20] | ZHOU H M, ZHAN Y B, GUO F Q, et al. Synthesis of biomass-derived carbon aerogel/MnOx composite as electrode material for high-performance superca-pacitors[J]. Electrochimica Acta, 2021. DOI: 10.1016/j.electacta.2021.138817. |
[21] | DONG J X, LI S J, DING Y. Anchoring nickel-cobalt sulfide nanoparticles on carbon aerogel derived from waste watermelon rind for high-performance asymmetric supercapacitors[J]. Journal of Alloys and Compounds, 2020. DOI: 10.1016/j.jallcom.2020.155701. |
[22] | WU X L, WEN T, GUO H L, et al. Biomass-derived sponge-like carbonaceous hydrogels and aerogels for supercapacitors[J]. ACS Nano, 2013, 7(4): 3589-3597. |
[23] | 周亚丽, 雷西萍, 于婷, 等. 壳聚糖碳气凝胶原位负载Fe3O4的制备及其电化学性能[J]. 硅酸盐学报, 2021, 49(10): 2164-2171. |
ZHOU Yali, LEI Xiping, YU Ting, et al. Preparation and electrochemical properties of carbon aerogel in-situ loaded Fe3O4 based on chitosan[J]. Journal of the Chinese Ceramic Society, 2021, 49(10): 2164-2171. | |
[24] | ZHAI Z Z, REN B, XU Y L, et al. Nitrogen self-doped carbon aerogels from chitin for supercapacitors[J]. Journal of Power Sources, 2021. DOI: 10.1016/j.jpowsour.2020.228976. |
[25] | YE Z Q, WANG F J, JIA C, et al. Biomass-based O, N-codoped activated carbon aerogels with ultramicropores for supercapacitors[J]. Journal of Materials Science, 2018, 53(17): 12374-12387. |
[26] |
MENG F L, LI L, WU Z, et al. Facile preparation of N-doped carbon nanofiber aerogels from bacterial cellulose as an efficient oxygen reduction reaction electrocatalyst[J]. Chinese Journal of Catalysis, 2014, 35(6): 877-883.
doi: 10.1016/S1872-2067(14)60126-1 |
[27] | XING W L, ZHANG M, LIANG J, et al. Facile synthesis of pinecone biomass-derived phosphorus-doping porous carbon electrodes for efficient electrochemical salt removal[J]. Separation and Purification Technology, 2020. DOI: 10.1016/j.seppur.2020.117357. |
[28] | KHALAFALLAH D, QUAN X Y, OUYANG C, et al. Heteroatoms doped porous carbon derived from waste potato peel for supercapacitors[J]. Renewable Energy, 2021, 170: 60-71. |
[1] | 徐振凯, 马鸣, 蔺多佳, 刘航, 张剑峰, 夏鑫. 自支撑聚吡咙基碳纤维负极材料的制备及其电化学性能[J]. 纺织学报, 2024, 45(06): 23-31. |
[2] | 范洋瑞, 钱建华, 徐凯杨, 王澳, 陶正龙. 基于氯化聚氯乙烯/聚乙烯醇缩丁醛共混膜的界面聚合改性[J]. 纺织学报, 2023, 44(07): 33-41. |
[3] | 王赫, 王洪杰, 赵紫奕, 张晓婉, 孙冉, 阮芳涛. 多孔与连通结构碳纳米纤维电极的设计及其电化学性能[J]. 纺织学报, 2023, 44(06): 41-49. |
[4] | 王洪杰, 姚岚, 王赫, 张仲. 医用口罩熔喷非织造布电极的制备及其电化学性能[J]. 纺织学报, 2022, 43(12): 22-28. |
[5] | 张天芸, 石小红, 张乐, 王富娟, 谢依娜, 杨亮, 冉奋. 基于离子液体协同法的双交联结构细菌纤维素/聚丙烯酰胺凝胶聚合物电解质构建[J]. 纺织学报, 2022, 43(11): 22-28. |
[6] | 陈康, 陈高峰, 王群, 王刚, 张玉梅, 王华平. 后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响[J]. 纺织学报, 2022, 43(10): 10-15. |
[7] | 李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清. 静电纺丝和炭化法制备纳米纤维素储能材料研究进展[J]. 纺织学报, 2022, 43(05): 178-184. |
[8] | 陈玉, 夏鑫. 锂离子电池液态GaSn自修复负极材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(06): 57-62. |
[9] | 杨鑫, 邵慧奇, 蒋金华, 陈南梁. 六角形编织物的微观结构模拟[J]. 纺织学报, 2021, 42(04): 85-92. |
[10] | 张润可, 吕汪洋, 陈文兴. 钴酞菁与碳纳米管共修饰碳纤维织物传感器的制备及其电化学性能[J]. 纺织学报, 2021, 42(04): 121-126. |
[11] | 邢宇声, 胡毅, 程钟灵. Si/TiO2复合碳纳米纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 36-43. |
[12] | 李育洲, 张雨凡, 周青青, 陈国强, 邢铁玲. 二氧化锰/石墨烯/棉织物复合电极的制备及其电化学性能[J]. 纺织学报, 2020, 41(01): 96-101. |
[13] | 白赫, 钱晓明, 范金土, 钱幺, 刘永胜, 王小波. 纤维质多孔材料中纤维间接触点数量的理论模型[J]. 纺织学报, 2019, 40(12): 21-26. |
[14] | 赵金洋, 孙窈, 张鑫, 张悦悦, 赵浩阅, 夏鑫. 锡/碳纳米纤维锂电负极材料形貌结构再造及其机制[J]. 纺织学报, 2019, 40(08): 7-13. |
[15] | 刘慧洁, 夏鑫. 深冷处理温度对锡锑/碳纳米纤维负极材料锂电性能的影响[J]. 纺织学报, 2019, 40(04): 38-43. |
|