纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 68-74.doi: 10.13475/j.fzxb.20221205101

• 纺织工程 • 上一篇    下一篇

基于组织模型的纬编面料透气性数字化预测

赵雅杰, 丛洪莲(), 丁玉琴, 董智佳   

  1. 江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2022-12-29 修回日期:2023-08-29 出版日期:2024-06-15 发布日期:2024-06-15
  • 通讯作者: 丛洪莲(1976—),女,教授,博士。主要研究方向为针织生产的数字化与智能化、针织产品的创新设计与性能。E-mail:cong-wkrc@163.com
  • 作者简介:赵雅杰(1999—),女,硕士生。主要研究方向为针织产品设计与性能研究。

Digitization prediction of air permeability of weft knitted fabrics based on stitch model

ZHAO Yajie, CONG Honglian(), DING Yuqin, DONG Zhijia   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2022-12-29 Revised:2023-08-29 Published:2024-06-15 Online:2024-06-15

摘要:

为在投入实际生产前正确评估双面纬编面料的透气性能,构建了双面织物组织模型,并进行织物孔隙率的数字化表达。首先,对双面纬编织物结构中包含的成圈、集圈和浮线这3种基本线圈形态进行孔隙率的单元组织模型构建;然后系统归纳出双层结构中9种正面结构单元和21种反面结构单元,并构建双层结构孔隙率矩阵,得到织物理论孔隙率的计算方法;最后,在3款不同组织的面料基础上通过线性拟合得出理论孔隙率与透气率的关系,并选用2款面料验证预测系统的准确性。结果表明:理论计算的透气率为627.0、688.6 mm/s,实际测量的透气率为600.3、676.3 mm/s,其误差率在±6%以内,说明构建的纬编组织模型和透气性预测方法具有合理性和适用性。

关键词: 纬编面料, 组织模型, 垂直映射面积, 孔隙率, 透气性数字化预测

Abstract:

Objective Fabric stitch is an important factor affecting the air permeability of knitted fabrics. In order to correctly evaluate the air permeability of double-sided weft knitting fabric before the actual production, the double-sided fabric stitch model is constructed, and the digital expression of fabric porosity is made, so as to realize the prediction of fabric air permeability.

Method According to the Peirce weft knitting classical loop model, the unit stitch model is constructed for knitting structure including three basic loop forms: knitting stitch, tuck stitch, and miss. Then, based on the above three basic unit stitch models, the weave model of the fabric formed by weft knitting was constructed and digitized, the theoretical porosity was calculated, and the air permeability was measured by YG461E-III automatic air permeability meter in turn, and the relationship between the theoretical porosity and air permeability was obtained by linear fitting. Finally, two fabrics were selected to verify the rationality and applicability of the prediction system.

Results The unit stitch model was constructed for the 3 basic loop forms including knitting stitch, tuck stitch, and miss assuming that the loop form in the fabric in a completely ideal state. Setting the yarn diameter as d, the knitting stitch model, tuck stitch model, miss model of yarn vertical mapping area are achieved to be approximate to 16.34d2, 11.63d2, 4d2. For weft knitted double-sided fabrics in a rib configuration, when the front and back loops that can tuck or not knockover at most once, the assembly of loop units forming the front and back of the fabric is shown. When the front and back loops that can tuck or not knockover two or more times, the loop cell assembly is shown. By dividing all the loop forms by the structural unit division method of the stitch of the fabric and the morphological approximation method, it can be concluded that the front surface of the fabric contains 9 kinds of (F1-F9) different lattice yarn morphological models, the reverse side of the fabric contains 21 different (B1-B21) lattice yarn configuration models. Through the digital transformation of the stitch model and the construction of porosity matrix, the calculation method of the theoretical porosity of the fabric is obtained. The design of three weft double-sided stitch with different structures, calculating the theoretical porosity using the same method, and the theoretical porosity of the fabrics formed by the three stitch was 25.34%, 33.63%, and 27.01%, respectively. Then, the air permeability of the three fabrics was measured. The theoretical porosity and air permeability were analyzed by linear regression. And a linear regression equation is obtained. Through theoretical calculation, the air permeability of the three fabrics are 790.5, 1 128.4, and 858.6 mm/s, which are less accurate than the actual measured air permeability (the error rate is within ± 6%). The comparison results of the theoretical calculation and actual measurement of the two fabrics selected finally are in line with the above deduced results.

Conclusion This paper predicts the air permeability of complex fabric based on the three basic unit stitch models of knitting stitch, tuck stitch, and miss. Through the stitch model construction and digital transformation of the stitch of the three designed fabrics, the theoretical porosity of the fabric is calculated, and according to the measured air permeability, the linear regression analysis of the theoretical porosity and air permeability was carried out, and the linear regression equation which can explain the relationship between the two factors was obtained. In addition, through the air permeability analysis of the two selected fabrics, the analysis results are consistent with the above-deduced results, indicating that the construction method of the stitch model and the theoretical deduction method of the relationship between porosity and air permeability are reasonable and applicable, which provides a new method for the air permeability prediction of knitted fabrics.

Key words: weft knitted fabric, stitch model, vertical mapping area, porosity, permeability digitization prediction

中图分类号: 

  • TS101.1

图1

单元组织模型"

图2

正反面线圈最多1次集圈或不脱圈的单元形态"

图3

正反面线圈2次及以上集圈或不脱圈的单元形态"

图4

织物分层线圈图及结构划分"

图5

织物正面结构单元"

图6

织物反面结构单元"

图7

结构单元形态近似化"

图8

织物结构数字化转化"

图9

近似多边形转化计算重叠部分面积"

图10

3种组织的编织图"

表1

面料规格参数"

面料编号 组织结构 面密度/(g·m-2) 厚度/mm
1# 组织1 165 0.76
2# 组织2 152 0.73
3# 组织3 141 0.71

图11

组织1分层线圈图及结构划分"

图12

2款面料的编织图"

[1] 许应春. 机织物结构及服用因素与透气性关系的研究[D]. 苏州: 苏州大学, 2008: 7-8.
XU Yingchun. Research on relation between air permeability and woven structure with garment fac-tors[D]. Suzhou: Soochow University, 2008: 7-8.
[2] 林浩, 钟国能, 何立峰, 等. 透气网眼空气层针织面料的设计开发[J]. 针织工业, 2019(1): 7-9.
LIN Hao, ZHONG Guoneng, HE Lifeng, et al. Design and development of breathable spacer knitted fabric[J]. Knitting Industries, 2019(1): 7-9.
[3] LIU Yanping, HU Hong. Compression property and air permeability of weft-knitted spacer fabrics[J]. The Journal of the Textile Institute, 2011, 102(4): 366-372.
[4] 吴湘济. 基于BP神经网络的服装里料透气性能预测[J]. 丝绸, 2007(10): 42-43.
WU Xiangji. Prediction of clothing feeding air permeability based on BP neural network[J]. Journal of Silk, 2007(10): 42-43.
[5] 徐广标, 王府梅. 基于BP神经网络的精纺毛织物透气性能的预测[J]. 毛纺科技, 2008(2): 54-56.
XU Guangbiao, WANG Fumei. Prediction of the permeability of worsted fabrics using BP neural net work[J]. Wool Textile Journal, 2008(2): 54-56.
[6] 曹建达. 棉织物透气性能的BP神经网络预测研究[J]. 棉纺织技术, 2003, 31(11): 19-21.
CAO Jianda. Predicting research of cotton fabric air permeability with BP[J]. Cotton Textile Technology, 2003, 31(11): 19-21.
[7] 邱茂伟, 王府梅. 机织物透气性能的预测研究[J]. 纺织学报, 2005, 26(4): 73-75.
QIU Maowei, WANG Fumei. Study on the prediction of woven fabrics air per meability[J]. Journal of Textile Research, 2005, 26(4): 73-75.
[8] 徐瑶瑶, 朱俐莎, 杜磊, 等. 棉织物透气性能的预测研究[J]. 现代纺织技术, 2015, 23(3): 26-30.
XU Yaoyao, ZHU Lisha, DU Lei, et al. Prediction of air permeability of cotton fabrics[J]. Advanced Textile Technology, 2015, 23(3): 26-30.
[9] 王健, 张晓丽, 刘陶. 机织物透气性预测的投影寻踪回归模型[J]. 纺织学报, 2011, 32(8): 46-49, 61.
WANG Jian, ZHANG Xiaoli, LIU Tao. Projection pursuit regression model for prediction of air permeability of woven fabrics[J]. Journal of Textile Research, 2011, 32(8): 46-49, 61.
[10] ZHU Guocheng, FANG Yuan, ZHAO Lianying, et al. Prediction of structural parameters and air permeability of cotton woven fabric[J]. Textile Research Journal, 2018, 88(14): 1650-1659.
[11] OGULATA R Tugrul, MEZARCIOZ Serin. Total porosity, theoretical analysis, and prediction of the air permeability of woven fabrics[J]. Journal of the Textile Institute, 2012, 103(6): 654-661.
[12] 程燕婷, 孟家光, 薛涛, 等. 3D打印纬平针面料的制备[J]. 纺织学报, 2022, 43(9): 115-119.
CHENG Yanting, MENG Jiaguang, XUE Tao, et al. Preparation of 3D printed weft plain knitted fabric[J]. Journal of Textile Research, 2022, 43(9): 115-119.
[13] 郑培晓, 蒋高明. 基于WebGL的纬编提花织物三维仿真[J]. 纺织学报, 2021, 42(5): 59-65.
ZHENG Peixiao, JIANG Gaoming. Three-dimensional simulation of weft-knitted jacquard fabric based on WebGL[J]. Journal of Textile Research, 2021, 42(5): 59-65.
[14] 董甜甜, 王蕾, 高卫东. 防羽面料孔径及分布特征与透气性和防钻绒性的关系[J]. 纺织学报, 2020, 41(12): 49-53.
doi: 10.13475/j.fzxb.20200503605
DONG Tiantian, WANG Lei, GAO Weidong. Relations of pore size and distribution characteristics of down-proof fabric with breathability and anti-drilling property[J]. Journal of Textile Research, 2020, 41(12): 49-53.
doi: 10.13475/j.fzxb.20200503605
[1] 梅宝龙, 董九志, 任洪庆, 蒋秀明. 基于多维度建模的碳/碳软硬混编预制体孔隙分析与单胞模型[J]. 纺织学报, 2023, 44(09): 108-115.
[2] 梅宝龙, 董九志, 杨涛, 蒋秀明, 任洪庆. 三维四向碳/碳预制件微孔板压实致密关键技术[J]. 纺织学报, 2022, 43(05): 116-123.
[3] 杨海贞, 房宽峻, 刘秀明, 蔡玉青, 安芳芳, 韩双. 喷墨印花预处理对织物组织结构的影响[J]. 纺织学报, 2019, 40(05): 84-90.
[4] 刘赛, 郑冬明, 潘行星, 刘贵, 杜赵群. 交叉螺旋结构拉胀纱线及其织物的成形与表征[J]. 纺织学报, 2019, 40(02): 26-29.
[5] 周赳 段丽娜 屠永坚. 双经双纬渐变显色提花织物设计原理与方法[J]. 纺织学报, 2016, 37(06): 36-41.
[6] 田伟 雷新 从明芳 祝成炎. 纺粘非织造布制备工艺与性能的关系[J]. 纺织学报, 2015, 36(11): 68-71.
[7] 梁翠芳 陈霞 傅婷 卜佳仙 万贤福 汪军. 基于图像处理的网格圈织物孔隙率检测[J]. 纺织学报, 2014, 35(5): 49-0.
[8] 张永超 丛洪莲. 咖啡炭纤维纬编面料的开发及其性能[J]. 纺织学报, 2013, 34(11): 39-0.
[9] 周明, 王鸿博, 王银利, 高卫东. 基于图像处理技术的纳米纤维膜孔隙率表征[J]. 纺织学报, 2012, 33(1): 20-23.
[10] 鲍韡韡;王曙东;张幼珠;尹桂波;吴佳林;施德兵;董智慧;符伟国. 静电纺再生丝素/明胶纳米纤维的结构与性能[J]. 纺织学报, 2008, 29(3): 1-4.
[11] 付海明;钟珂. 计算机优化选择纤维滤料结构参数[J]. 纺织学报, 2008, 29(12): 112-116.
[12] 杜兆芳;郭世俊. 黄麻/苎麻草坪培植基的透气透湿性分析[J]. 纺织学报, 2005, 26(6): 57-58.
[13] 王丽华;盛京;赵家森. 聚苯硫醚中空纤维微滤膜的研究(Ⅱ)——拉伸工艺对中空纤维结构与性能的影响[J]. 纺织学报, 2004, 25(01): 25-27.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!