纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 52-59.doi: 10.13475/j.fzxb.20230101201

• 纤维材料 • 上一篇    下一篇

醋化级芦苇溶解浆的制备及其性能

王小康1,2, 解开放1,2(), 周衡书1,2, 包新军1,2, 徐应盛3   

  1. 1.湖南工程学院 纺织服装学院, 湖南 湘潭 411104
    2.湖南工程学院 湖南省新型纤维面料及加工工程技术研究中心, 湖南 湘潭 411104
    3.湖南骏泰新材料科技有限责任公司, 湖南 怀化 418005
  • 收稿日期:2023-01-05 修回日期:2023-06-26 出版日期:2023-09-15 发布日期:2023-10-30
  • 通讯作者: 解开放(1988—),男,讲师,博士。主要研究方向为功能性和产业用纺织品。E-mail:20846@hnie.edu.cn
  • 作者简介:王小康(1998—),男,硕士生。主要研究方向为纺织新材料。
  • 基金资助:
    湖南省重点研发计划项目(2022NK2042);湖南省教育厅创新平台项目(20K037);湖南省教育厅青年项目(22B0729);湘潭市科技创新双“50”项目(CG-YB20211002)

Preparation and characterization of acetate grade reed pulp

WANG Xiaokang1,2, XIE Kaifang1,2(), ZHOU Hengshu1,2, BAO Xinjun1,2, XU Yingsheng3   

  1. 1. College of Textile and Fashion, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China
    2. Engineering Technology Research Center of New Fiber Fabric and Processing, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China
    3. Hunan Juntai New Material Technology Co., Ltd., Huaihua, Hunan 418005, China
  • Received:2023-01-05 Revised:2023-06-26 Published:2023-09-15 Online:2023-10-30

摘要:

为探索使用可再生的芦苇资源制备醋化级溶解浆的可行性,以湖南洞庭湖区的南荻为原料,采用水预水解-硫酸盐法蒸煮-D0EpD1(ClO2漂白脱木素段-H2O2漂白段-ClO2漂白增加白度段)3段漂白工艺制备了南荻浆粕,并对其甲种纤维素含量、白度、聚合度、多戊糖含量、灰分含量和铁含量,以及表观形貌、化学结构和晶体结构等进行测试与分析。结果表明:蒸煮后南荻的粗浆得率为46.31%,3段漂白工艺使南荻浆粕的主要性能指标得到明显改善,其甲种纤维素含量提高了1.24%达到97.70%,白度提高1倍达到91.42%,特性黏度降低38.01%,使南荻浆粕的平均聚合度达到1 413;制浆过程中高温、NaOH、Na2S、ClO2和H2O2的共同作用使南荻中的木质素、半纤维素和灰分得到有效去除。本文工艺制备的南荻浆粕的性能达到了醋化级溶解浆的基本要求,为下一步制备醋酯纤维素和醋酯纤维提供参考。

关键词: 芦苇, 南荻, 醋酯纤维, 溶解浆, 纤维素, 木质素, 半纤维素

Abstract:

Objective Based on the research on using biomass materials (such as bamboo, straw, sorghum straw, mulberry straw, hemp, bagasse, olive, tobacco stem and so on) to prepare acetate grade dissolving pulp and downstream products, this paper proposes the use of rich reed resources in Dongting Lake area to explore the feasibility of preparing acetate reed pulp, and test and analyze the performance of the prepared pulp so as to establish understanding on the preparation of cellulose acetate and acetate fiber.

Method The typical sulfate method was adopted to prepare the Triarrhena lutarioriparia dissolving pulp. Firstly, the water pre-hydrolysis of Triarrhena lutarioriparia slices was carried out in an electrothermal high-pressure boiling pot (Fig. 2) with a liquor ratio of 1∶4. Then, the equipment was used for sulfate boiling (Fig. 3), where the main components of the boiling solution were NaOH and Na2S. Crude pulp was cleaned with a 45 μm polyester mesh bag and sieved with a sieve machine with a sieve gap of 0.25 mm. Finally, the D0EpD1 three-stage bleaching process (Tab. 2) was used for bleaching, and the bleaching agents were ClO2 and H2O2. The cellulose I content, whiteness, polymerization degree, pentosan content, ash content and iron content of the prepared triarrhena lutarioriparia dissolving pulp were tested, and the apparent morphology, infrared spectroscopy, Raman spectroscopy and X-ray diffraction were employed for analysis.

Results The yield of crude pulp after boiling was 46.31%. The three-stage bleaching process significantly improved the main performance indexes of Triarrhena lutarioriparia pulp. The content of cellulose I increased by 1.24% to 97.70%, the whiteness doubled to 91.42%, and the intrinsic viscosity decreased by 38.01%, which made the average degree of polymerization of pulp reach 1 413. In addition, the pentosan content, ash content and iron content of the pulp after bleaching were 5.76%, 0.004% and 0.000 562%, respectively. The cellulose fibers prepared from Triarrhena lutarioriparia dissolving pulp were long cylindrical with rough surface showing a large number of grooves, cracks, pores and filaments. In the infrared spectra (Fig. 5), the Triarrhena lutarioriparia dissolving pulp showed a typical cellulose characteristic peak, and the intensity of the absorption peak was enhanced compared with that of Triarrhena lutarioriparia. The characteristic peaks of lignin at 1 254 cm-1 and 1 511 cm-1 and the characteristic peaks of hemicellulose at 1 726 cm-1 disappeared, indicating that the pulping process removed the lignin and hemicellulose in Triarrhena lutarioriparia. The characteristic peaks at 1 169 cm-1 and 1 607 cm-1 relating to lignin disappeared, and the intensity of the characteristic peak at 2 896 cm-1 decreased indicating that non-cellulose substances such as lignin in Triarrhena lutarioriparia were removed during pulping (Fig. 6). The Triarrhena lutarioriparia dissolving pulp showed a typical diffraction curve of cellulose I. The small peak at 26.4°disappeared and no peak appeared at 29.4°(Fig. 7), suggesting that the inorganic components such as SiO2 in Triarrhena lutarioriparia were effectively removed after the pulping process.

Conclusion The acetate grade Triarrhena lutarioriparia dissolving pulp was prepared by water pre-hydrolysis-sulfate cooking-D0EpD1 three-stage bleaching process. The combined action of high temperature and chemical agents during the pulping process effectively removed the lignin, hemicellulose and ash in Triarrhena lutarioriparia, formed irregular microfibril structure on the surface of cellulose fiber, and presented a rough surface full of grooves. The successful preparation of acetate grade Triarrhena lutarioriparia dissolving pulp not only lays a foundation for the preparation of cellulose acetate and acetate fiber, but also helps open up a new way for high-value and efficient utilization of reed resources.

Key words: reed, Triarrhena lutarioriparia, acetate fiber, dissolving pulp, cellulose, lignin, hemicellulose

中图分类号: 

  • TS151

图1

南荻纵横向形态及溶解浆的制备工艺"

图2

南荻预水解工艺"

图3

南荻硫酸盐法蒸煮工艺"

表1

南荻浆粕漂白工艺参数"

漂白
工艺
漂白剂
种类
漂白剂用量/
(kg·t-1)
漂白
温度/℃
漂白
时间/min
D0 ClO2 15 70 25
EP H2O2 8 90 90
D1 ClO2 5 70 120

图4

南荻内外表面、纵横向截面和溶解浆的表观形貌"

图5

南荻和南荻溶解浆红外光谱图"

图6

南荻和南荻溶解浆的拉曼光谱图"

图7

南荻和南荻溶解浆的X射线衍射曲线"

[1] 万献军. 南洞庭湖区芦苇综合利用研究浅探[J]. 农业技术与装备, 2019, 356(8): 87-88.
WAN Xianjun. Study on the comprehensive utilization of reeds in the South Dongting Lake area[J]. Agricultural Technology & Equipment, 2019, 356(8): 87-88.
[2] 刘敏. 加快洞庭湖区产业综合开发利用的思考:以芦苇产业为例[J]. 长江技术经济, 2019, 3(3): 42-46.
LIU Min. Thoughts on accelerating the comprehensive development and utilization of industry in Dongting Lake area:taking the reed industry as an example[J]. Technology and Economy of Changjiang, 2019, 3(3): 42-46.
[3] 陈玲, 尹子康, 雒鹰, 等. 一种芦苇秸秆板的研究[J]. 林业机械与木工设备, 2020, 48(3): 28-31.
CHEN Ling, YIN Zikang, LUO Ying, et al. Study on reed straw board[J]. Forestry Machinery & Woodworking Equipment, 2020, 48(3): 28-31.
[4] 宋泽峰, 石晓倩, 刘卓, 等. 芦苇生物炭的制备、表征及其吸附铜离子与双酚A的性能[J]. 环境化学, 2020, 39(8): 2196-2205.
SONG Zefeng, SHI Xiaoqian, LIU Zhuo, et al. Synthesis and characterization of reed-based biochar and its adsorption properties for Cu2+ and bisp-henol A (BPA)[J]. Environmental Chemistry, 2020, 39(8): 2196-2205.
[5] 钟国能, 黎亮, 姚心培, 等. 仿真丝二醋酸针织面料的设计开发[J]. 针织工业, 2021(9): 35-38.
ZHONG Guoneng, LI Liang, YAO Xinpei, et al. Design and development of silk imitated diacetate knitted fabric[J]. Knitting Industries, 2021 (9): 35-38.
[6] 李勇, 周兰阳, 方斌, 等. Lyocell纤维用溶解浆的来源和制备概述[J]. 纤维素科学与技术, 2022, 30(4): 1-10.
LI Yong, ZHOU Lanyang, FANG Bin, et al. Introduction to source and preparation of dissolving pulp for Lyocell fiber[J]. Journal of Cellulose Science and Technology, 2022, 30(4): 1-10.
[7] 梁荷叶, 吴海波, 张建超, 等. 烟用二醋酸纤维非织造材料卷烟滤棒的研制[J]. 产业用纺织品, 2020, 38(11): 5-10.
LIANG Heye, WU Haibo, ZHANG Jianchao, et al. Development of cigarette filter rod fors diacetate non-woven material[J]. Technical Textiles, 2020, 38(11): 5-10.
[8] 章伟, 何建新, 李克兢, 等. 竹浆粕的预水解与硫酸盐蒸煮工艺[J]. 纺织学报, 2009, 30(10): 31-36.
ZHANG Wei, HE Jianxin, LI Kejing, et al. Prehydrolysis and sulfated cooking processes of bamboo dissolving pulps[J]. Journal of Textile Research, 2009, 30(10): 31-36.
[9] SAKA S, MATSUMURA H. Wood pulp manufacturing and quality characteristics[J]. Macromolecular Symposia, 2004, 208(1): 37-48.
doi: 10.1002/masy.v208:1
[10] 马晓龙, 乐保祥, 沈琳, 等. 国产棉浆粕的性能表征及制备二醋酸纤维素的研究[J]. 纤维素科学与技术, 2010, 18(3): 13-20.
MA Xiaolong, LE Baoxiang, SHEN Lin, et al. Characterization of properties of domestic cotton linters pulp and its acetylation behavior[J]. Journal of Cellulose Science and Technology, 2010, 18(3): 13-20.
[11] 季柳炎. 2021年溶解浆市场回顾与2022年展望[J]. 造纸信息, 2022(2): 46-53.
JI Liuyan. Dissolving pulp market review in 2021 and outlook for 2022[J]. China Paper Newsletters, 2022(2): 46-53.
[12] 何建新. 高级竹溶解浆粕的制备及其用于合成醋酸纤维素的研究[D]. 上海: 东华大学, 2007:16-28.
HE Jianxin. Preparation of high-grade bamboo dissolving pulp and its application for the synthesis of cellulose acetate[D]. Shanghai: Donghua University, 2007:16-28.
[13] 张建兴, 陈洪章. 秸秆醋酸纤维素的制备[J]. 化工学报, 2007, 58(10): 134-139.
ZHANG Jianxing, CHEN Hongzhang. Preparation of cellulose acetate from crop straw[J]. CIESC Journal, 2007, 58(10): 134-139.
[14] ANDRADE ALVES J A, LISBOA Dos Santos M D, MORAIS C C, et al. Sorghum straw: pulping and bleaching process optimization and synthesis of cellulose acetate[J]. International Journal of Biological Macromolecules, 2019, 135: 877-886.
doi: S0141-8130(19)32540-1 pmid: 31152840
[15] 王可, 马倩, 王乔逸. 利用桑树秸秆制备醋酸纤维素的研究[J]. 上海纺织科技, 2018, 46(10): 33-35.
WANG Ke, MA Qian, WANG Qiaoyi. Preparation of cellulose acetate form mulberry straw[J]. Shanghai Textile Science & Technology, 2018, 46(10): 33-35.
[16] LIU Zhaotie, FAN Xiushan, WU Jin, et al. A green route to prepare cellulose acetate particle from ramie fiber[J]. Reactive & Functional Polymers, 2007, 67(2): 104-112.
[17] CERQUEIRA D A, FILHO G R, MEIRELES C S. Optimization of sugarcane bagasse cellulose acetylation[J]. Carbohydrate Polymers, 2007, 69(3): 579-582.
doi: 10.1016/j.carbpol.2007.01.010
[18] HAMED O A, JODEH S, AL-HAJJ N, et al. Cellulose acetate from biomass waste of olive industry[J]. Journal of Wood Science, 2015, 61(1): 45-52.
doi: 10.1007/s10086-014-1442-y
[19] 吴佳骏, 覃小红. 烟梗浆亚微米醋酸纤维的制备及其性能[J]. 纺织学报, 2019, 40(12): 1-8.
WU Jiajun, QIN Xiaohong. Preparation and characterization of cellulose acetate sub-micro fiber from burley tobacco stalk pulp[J]. Journal of Textile Research, 2019, 40(12): 1-8.
doi: 10.1177/004051757004000101
[20] SEGAL L, CREELY J J, MARTION A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer[J]. Textile Research Journal, 1959, 29(10): 786-794.
doi: 10.1177/004051755902901003
[21] MUNIZ F T L, MIRANDA M A R, MORILLA Dos Santos C, et al. The Scherrer equation and the dynamical theory of X-ray diffraction[J]. Acta Crystallogr A, 2016, 72(3): 385-390.
doi: 10.1107/S205327331600365X
[22] MONSHI A, FOROUGHI M R, MONSHI M R. Modified scherrer equation to estimate more accurately nano-crystallite size using XRD[J]. World Journal of Nano Science and Engineering, 2012, 2(3): 154-160.
doi: 10.4236/wjnse.2012.23020
[23] 赵双双, 田中建, 陈嘉川, 等. 碱浸渍对芦苇茎秆微观结构及其机械浆性能的影响[J]. 中国造纸, 2021, 40(3): 20-26.
ZHAO Shuangshuang, TIAN Zhongjian, CHEN Jiachuan, et al. Effect of alkali impregnation on microstructure and mechanical pulp properties of reed stem[J]. China Pulp & Paper, 2021, 40(3): 20-26.
[24] 辛民岳, 梁列峰. 超声波辅助酸碱法提取芦苇纤维素的研究[J]. 武汉纺织大学学报, 2019, 32(6): 8-14.
XIN Minyue, LIANG Liefeng. Study on ultrasonic assisted acid and alkaline treatment extraction of cellulose from reed[J]. Journal of Wuhan Textile University, 2019, 32(6): 8-14.
[25] 张文龙, 赵文龙, 戴亚杰. 芦苇浆粕预处理方法对其微晶纤维素特性的影响[J]. 哈尔滨理工大学学报, 2015, 20(3): 72-77.
ZHANG Wenlong, ZHAO Wenlong, DAI Yajie. The effect of methods to pretreat reed pulp on the characteristics of microcrystalline cellulose[J]. Journal of Harbin University of Science and Technology, 2015, 20(3): 72-77.
[26] ANDREEVA O A, BURKOVA L A, GREBENKIN A N, et al. IR spectroscopic study of prepurified flax[J]. Russian Journal of Applied Chemistry, 2002, 75(9): 1513-1516.
doi: 10.1023/A:1022266004482
[27] 杨占平, 曹建华, 马晓龙, 等. 醋化级竹浆粕的制备及醋化性能[J]. 高分子材料科学与工程, 2009, 25(7): 152-154,158.
YANG Zhanping, CAO Jianhua, MA Xiaolong, et al. Acetylation property of dissolving pulp prepared from bamboo[J]. Polymer Materials Science & Engineering, 2009, 25(7): 152-154,158.
[28] 马静, 马建锋, 张逊, 等. 拉曼光谱在植物细胞壁研究中的进展[J]. 光谱学与光谱分析, 2013, 33(5): 1239-1243.
pmid: 23905327
MA Jing, MA Jianfeng, ZHANG Xun, et al. Application of the Raman spectroscopy to the study of plant cell walls[J]. Spectroscopy and Spectral Analysis, 2013, 33(5): 1239-1243.
pmid: 23905327
[29] JI Zhe, MA Jianfeng, XU Feng. Multi-scale visualization of dynamic changes in poplar cell walls during alkali pretreatment[J]. Microscopy and Microanalysis, 2014, 20(2): 566-576.
doi: 10.1017/S1431927614000063 pmid: 24548595
[30] HAN Yinli, SHAO Nisun, CHEN Zhouwang, et al. Structural and dynamic changes of lignin in Eucalyptus cell walls during successive alkaline ethanol treat-ments[J]. Industrial Crops and Products, 2015, 74(15): 200-208.
doi: 10.1016/j.indcrop.2015.04.048
[31] 冯龙, 孙存举, 毕文思, 等. 毛竹薄壁细胞组分分布及取向显微成像研究[J]. 光谱学与光谱分析, 2020, 40(9): 2957-2961.
FENG Long, SUN Cunjü, BI Wensi, et al. The distribution and orientation of cell wall components of moso bamboo parenchyma[J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2957-2961.
[32] 金克霞, 王坤, 崔贺帅, 等. 拉曼光谱在木质素研究中的应用进展[J]. 林业科学, 2018, 54(3): 144-151.
JIN Kexia, WANG Kun, CUI Heshuai, et al. Application of Raman spectroscopy to the research on lignin[J]. Scientia Silvae Sinicae, 2018, 54(3): 144-151.
[33] KANBAYASHI T, MIYAFUJI H. Raman microscopic analysis of wood after treatment with the ionic liquid, 1-ethyl-3-methylimidazolium chloride[J]. Holzforschung, 2015, 69(3): 273-279.
doi: 10.1515/hf-2014-0060
[34] MATEU B P, BOCK P, GIERLINGER N. Raman imaging of plant cell walls[J]. Methods in Molecular Biology, 2020, 2149: 251-295.
doi: 10.1007/978-1-0716-0621-6_15 pmid: 32617940
[35] RONCERO M B, TORRES A L, COLOM J F, et al. TCF bleaching of wheat straw pulp using ozone and xylanase: part A: paper quality assessment[J]. Bioresource Technology, 2003, 87(3): 305-314.
doi: 10.1016/S0960-8524(02)00224-9
[36] 刘文. 醋化级溶解浆制备及其理化性能的分析表征[D]. 北京: 北京林业大学, 2014:111-112.
LIU Wen. Preparation, analysis and characterization of acetate grade dissolving pulps[D]. Beijing: Beijing Forestry University, 2014:111-112.
[37] 何建新, 章伟, 王善元. 竹纤维的结构分析[J]. 纺织学报, 2008, 29(2): 20-24.
HE Jianxin, ZHANG Wei, WANG Shanyuan. Analyzing the structure of bamboo fiber[J]. Journal of Textile Research, 2008, 29(2): 20-24.
[38] YAKUNIN N A, ZAVADSKII A E. Effect of dampening on the supramolecular structure of cotton cellulose[J]. Fiber Chemistry, 2004, 36(6): 463-466.
doi: 10.1007/s10692-005-0038-0
[39] 印霞, 何建新, 于伟东. 竹浆纤维与几种浆粕纤维形态及结构的比较[J]. 纺织学报, 2008, 29(10): 17-20.
YIN Xia, HE Jianxin, YU Weidong. Comparison of the morphology and structure between bamboo fiber and several kinds of pulp fibers[J]. Journal of Textile Research, 2008, 29(10): 17-20.
[1] 邵彦峥, 孙将皓, 魏春艳, 吕丽华. 棉秆皮微晶纤维素/改性壳聚糖吸附纤维制备与性能[J]. 纺织学报, 2023, 44(08): 18-25.
[2] 周堂, 汪邓兵, 赵磊, 刘祖一, 凤权. 负载WO3的细菌纤维素/Au膜制备及其催化性能[J]. 纺织学报, 2023, 44(04): 16-23.
[3] 李宇, 傅佳佳, CAVACO-PAULO Artur, 王鸿博, 高卫东. 沤竹过程中细菌菌群的结构变化和作用[J]. 纺织学报, 2023, 44(03): 96-103.
[4] 蒲海红, 贺芃鑫, 宋柏青, 赵丁莹, 李欣峰, 张天一, 马建华. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(01): 79-86.
[5] 乔曦冉, 房宽峻, 刘秀明, 巩继贤, 张帅, 张敏. 羟乙基甲基纤维素改性对棉和锦纶织物表面性质的差异性影响[J]. 纺织学报, 2022, 43(11): 127-132.
[6] 张天芸, 石小红, 张乐, 王富娟, 谢依娜, 杨亮, 冉奋. 基于离子液体协同法的双交联结构细菌纤维素/聚丙烯酰胺凝胶聚合物电解质构建[J]. 纺织学报, 2022, 43(11): 22-28.
[7] 张晓程, 周彦, 田卫国, 乔昕, 贾锋伟, 许丽丽, 张金明, 张军. 废旧棉/涤混纺织物的组分快速分离及其含量测定[J]. 纺织学报, 2022, 43(07): 1-8.
[8] 李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清. 静电纺丝和炭化法制备纳米纤维素储能材料研究进展[J]. 纺织学报, 2022, 43(05): 178-184.
[9] 李兴兴, 李琴, 岳甜甜, 刘宇清. 微纳米纤维素材料的微流控制备技术研究进展[J]. 纺织学报, 2022, 43(04): 180-186.
[10] 孔维庆, 胡述锋, 俞森龙, 周哲, 朱美芳. 木质纤维素功能材料的研究进展[J]. 纺织学报, 2022, 43(04): 1-9.
[11] 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53-60.
[12] 金耀峰, 刘雷艮, 王薇, 陆鑫. 纳米纤维素室温诱导下的金红石型纳米二氧化钛制备及其紫外线屏蔽性能[J]. 纺织学报, 2022, 43(02): 176-182.
[13] 吴嘉茵, 王汉琛, 黄彪, 卢麒麟. 氯离子响应性纳米纤维素荧光水凝胶的构筑[J]. 纺织学报, 2022, 43(02): 44-52.
[14] 李珍珍, 支超, 余灵婕, 朱海, 杜明娟. 废棉再生气凝胶/经编间隔织物复合材料的制备及其性能[J]. 纺织学报, 2022, 43(01): 167-171.
[15] 骆晓蕾, 刘琳, 姚菊明. 纯生物质纤维素气凝胶的制备及其阻燃性能[J]. 纺织学报, 2022, 43(01): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!