纺织学报 ›› 2023, Vol. 44 ›› Issue (06): 10-20.doi: 10.13475/j.fzxb.20230101602

• 纺织科技新见解学术沙龙专栏: 高品质芳纶生产关键技术及其产品应用 • 上一篇    下一篇

芳纶纳米纤维气凝胶的研究进展

吕婧, 刘增伟, 程青青, 张学同()   

  1. 中国科学院苏州纳米技术与纳米仿生研究所, 江苏 苏州 215123
  • 收稿日期:2023-01-09 修回日期:2023-02-17 出版日期:2023-06-15 发布日期:2023-07-20
  • 通讯作者: 张学同
  • 作者简介:吕婧(1989—),女,副研究员,博士。主要研究方向为芳纶气凝胶及其相变复合材料。
  • 基金资助:
    国家自然科学基金面上项目(52173052);国家自然科学基金青年科学基金项目(52003290)

Research progress of aramid nanofiber aerogels

LÜ Jing, LIU Zengwei, CHENG Qingqing, ZHANG Xuetong()   

  1. Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, Jiangsu 215123, China
  • Received:2023-01-09 Revised:2023-02-17 Published:2023-06-15 Online:2023-07-20
  • Contact: ZHANG Xuetong

摘要:

为推动芳纶纳米纤维气凝胶从实验室走向实际应用,系统介绍了芳纶纳米纤维气凝胶国内外研究现状。首先分析了气凝胶领域面临的主要困难,阐述了芳纶纳米纤维气凝胶开发的重要意义;随后介绍了构筑单元芳纶纳米纤维的制备方法及其流变学行为,为后续芳纶气凝胶材料的制备提供参考;最后重点综述了芳纶气凝胶纤维、芳纶气凝胶薄膜以及3D打印芳纶气凝胶的制备、性能及应用等研究现状,总结了制备过程中一系列新型溶胶-凝胶转变原理,概述了芳纶气凝胶材料性能提升的策略以及在热管理、智能防护和分离过滤等新兴领域中的应用前景。分析认为,芳纶纳米纤维气凝胶发展仍处于初期阶段,优化芳纶纳米纤维气凝胶制备技术、进一步提升其性能仍将是研究的热点与重点。

关键词: 芳纶, 纳米纤维, 气凝胶纤维, 气凝胶薄膜, 3D打印气凝胶

Abstract:

Significance Aerogels are synthetic solid nanomaterials formed by the replacement of liquid in a gel with gas. The continuous network structure renders aerogels with extraordinary properties, including ultralow density, super-high porosity, high specific surface area, low thermal conductivity, low optical refractive index and low dielectric constant. They have demonstrated tremendous potentials for various applications, such as thermal insulation, environmental protection and separation. However, in the development process of aerogels, there are still questions to be answered on development of new sol-gel transition principles and strategies, effectively control of macro morphology of aerogels, improvement of service performance, and expansion of the application field. As newly emerging aerogels, aramid aerogels utilized aramid nanofibers as building blocks have the potential to provide answers to the above-mentioned questions. In order to accelerate the development of aramid nanofiber aerogels from laboratory investigation to practical application and thus promote the development of the entire aerogel industry, the research status of aramid nanofiber aerogels are comprehensively reviewed in this paper.
Progress The building blocks of aramid nanofiber aerogels need to be obtained. So far, various methods have been developed to prepare aramid nanofibers, which can be classified into "top-down" and "bottom-up" methods. The rheological behavior of aramid nanofiber dispersion shows significant shear thinning behavior. In addition, the dynamic stress scanning test reveals that the aramid nanofiber dispersion shows elastic behavior in a certain stress range. These distinguishing features indicate that the aramid nanofiber dispersion can be processed through wet spinning, blade coating, 3D printing, and so on. Therefore, aramid aerogel fibers have been prepared via wet spinning or relevant spinning method, such as liquid crystal spinning. During the fabrication process, novel dynamic sol-gel transition principles was proposed. The as-prepared aramid aerogel fibers were shown to possess nano-porous network structure and inherit excellent physical and chemical properties of aramid materials, demonstrating ultra-low thermal conductivity and excellent mechanical properties. Besides, the aramid aerogel fibers were further functionalized to render them with unique functions, such as hydrophobicity, absorbability, and electric conductivity. These aramid aerogel fibers demonstrated wide potential applications in the textile field, which can be woven into thermal insulation fabrics and smart thermal regulation fabrics. In terms of aramid aerogel films, the fabrication process includes blade/spin coating, sol-gel transition, and special drying process. The typical aerogel structure was found to bring about aramid aerogel films with high specific surface area and low thermal conductivity. The post-processing and functionalization were shown to further improve their mechanical properties and electric conductivity. These aramid aerogel films have demonstrated great application prospects in separation and filtration, electromagnetic shielding, infrared stealth, thermal management, and so on. In addition, direct-ink-writing 3D printing and microgel-directed suspended 3D printing strategies were developed to fabricate 3D aramid aerogels. These printing technologies enable aramid aerogels with arbitrary shape realized. Thus, the mechanical or thermal insulation performances can be customized through simple structural design.
Conclusion and Prospect In view of the current urgent demand for high-performance aerogel materials, the research on aramid nanofiber aerogels will remain a research focus. By analyzing the research situation about the preparation, performance and application of aramid aerogel fibers, aramid aerogel films and 3D printed aramid aerogels, it can be confirmed that the development stage of aramid nanofiber aerogels is still in the initial exploration stage. On the one hand, the preparation technology of aramid nanofiber aerogel is not yet mature, and it needs to integrate deeply with traditional fiber, film or 3D printing technologies. There are many key points that need to be improved urgently, such as continuous solvent replacement, drying and other processes. The ultimate performances of aramid nanofiber aerogels have not been reached, and there is still room for improvement in mechanical properties. Therefore, it is necessary to further research on aramid nanofiber aerogels, optimize their preparation technologies, improve their performances, and reduce their production costs, so as to widen applications in thermal management, intelligent protection, separation, filtration and other fields.

Key words: aramid fiber, nanofiber, aerogel fiber, aerogel film, 3D printing aerogel

中图分类号: 

  • TB324

图1

动态溶胶-凝胶湿法纺丝示意图"

图2

芳纶气凝胶纤维的结构"

图3

芳纶气凝胶纤维织物与芳纶气凝胶相变纤维智能调温织物"

图4

芳纶气凝胶薄膜微观形貌与氮气吸脱附曲线"

图5

芳纶气凝胶薄膜限域相变材料制备热二极管示意图"

图6

直写成型3D打印芳纶纳米纤维气凝胶制备示意图"

图7

悬浮基质辅助3D打印芳纶纳米纤维气凝胶示意图"

[1] PIERRE A C, PAJONK G M. Chemistry of aerogels and their applications[J]. Chemical Reviews, 2002, 102(11): 4243-4265.
pmid: 12428989
[2] SOLEIMANI DORCHEH A, ABBASI M H. Silica aerogel: synthesis, properties and characterization[J]. Journal of Materials Processing Technology, 2008, 199(1-3): 10-26.
doi: 10.1016/j.jmatprotec.2007.10.060
[3] 师建军, 王伟, 朱伟, 等. 柔性气凝胶材料的制备及应用研究进展[J]. 材料导报, 2022.DOI:10.11896/cldb.22040393.
doi: 10.11896/cldb.22040393
SHI Jianjun, WANG Wei, ZHU Wei, et al. Research progress on preparation and application of flexile aerogel materials[J]. Materials Reports, 2022.DOI:10.11896/cldb.22040393.
doi: 10.11896/cldb.22040393
[4] GEORGIOU E, RAPTOPOULOS G, ANASTOPOULOS I, et al. Uranium removal from aqueous solutions by aerogel-based adsorbents: a critical review[J]. Nanomaterials, 2023. DOI: 10.3390/nano13020363.
doi: 10.3390/nano13020363
[5] HUANG C, CHENG X, CHEN B, et al. Preparation of aerogel-like silica foam with the hollow-sphere-based 3D network skeleton by the cast-in situ method and ambient pressure drying[J]. Nano Letters, 2022, 22(23): 9290-9296.
doi: 10.1021/acs.nanolett.2c02768 pmid: 36404639
[6] CAI B, SAYEVICH V, GAPONIK N, et al. Emerging hierarchical aerogels: self-assembly of metal and semiconductor nanocrystals[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201707518.
doi: 10.1002/adma.201707518
[7] WAN J, ZHANG J, YU J, et al. Cellulose aerogel membranes with a tunable nanoporous network as a matrix of gel polymer electrolytes for safer lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(29): 24591-24599.
[8] HU P, LYU J, FU C, et al. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films[J]. ACS Nano, 2020, 14(1): 688-697.
doi: 10.1021/acsnano.9b07459 pmid: 31851483
[9] 张美云, 杨斌, 宋顺喜, 等. 先进芳纶绝缘纸基材料研究进展及展望[J]. 中国造纸, 2022, 41(11): 1-10.
ZHANG Meiyun, YANG Bin, SONG Shunxi, et al. Progress and prospect of advanced aramid insulating paper-based materials[J]. China Pulp & Paper, 2022, 41(11):1-10.
[10] LIU W, LIU M, LIU X, et al. Recent advances of 2D materials in nonlinear photonics and fiber lasers[J]. Advanced Optical Materials, 2020. DOI: 10.1002/adom.201901631.
doi: 10.1002/adom.201901631
[11] 王海宁, 万怡灶, 李建, 等. 纳米纤维组织工程支架及其纳米效应研究进展[J]. 材料导报, 2007, 21(4): 13-20.
WANG Haining, WAN Yizao, LI Jian, et al. Research and development of nanofibrous scaffolds for tissue engineering and their nanoeffects[J]. Materials Reports, 2007, 21(4): 13-20.
[12] YANG B, WANG L, ZHANG M, et al. Fabrication, applications, and prospects of aramid nanofiber[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.202000186.
doi: 10.1002/adfm.202000186
[13] BURCH R R, SWEENY W, SCHMIDT H W, et al. Preparation of aromatic polyamide polyanions a novel processing strategy for aromatic polyamides[J]. Macromolecules, 1990, 23(4): 1065-1072.
doi: 10.1021/ma00206a026
[14] YANG M, CAO K, SUI L, et al. Dispersions of aramid nanofibers: a new nanoscale building block[J]. ACS Nano, 2011, 5(9): 6945-6954.
doi: 10.1021/nn2014003 pmid: 21800822
[15] YANG B, WANG L, ZHANG M, et al. Timesaving, high-efficiency approaches to fabricate aramid nanofibers[J]. ACS Nano, 2019, 13(7): 7886-7897.
doi: 10.1021/acsnano.9b02258 pmid: 31244045
[16] LUO J, ZHANG M, YANG B, et al. Fabrication and characterization of differentiated aramid nanofibers and transparent films[J]. Applied Nanoscience, 2018, 9(5): 631-645.
doi: 10.1007/s13204-018-0722-z
[17] KOO J M, KIM H, LEE M, et al. Nonstop monomer-to-aramid nanofiber synthesis with remarkable reinforcement ability[J]. Macromolecules, 2019, 52(3): 923-934.
doi: 10.1021/acs.macromol.8b02391
[18] YAN H, LI J, TIAN W, et al. A new approach to the preparation of poly(p-phenylene terephthalamide) nanofibers[J]. RSC Advances, 2016, 6(32): 26599-26605.
doi: 10.1039/C6RA01602B
[19] GREINER A, WENDORFF J H. Electrospinning: a fascinating method for the preparation of ultrathin fibers[J]. Angewandte Chemie-International Edition, 2007, 46(30): 5670-703.
doi: 10.1002/anie.200604646 pmid: 17585397
[20] YAO J, JIN J, LEPORE E, et al. Electrospinning of p-aramid fibers[J]. Macromolecular Materials and Engineering, 2015, 300(12): 1238-1245.
doi: 10.1002/mame.201500130
[21] CHENG Q, LIU Y, LYU J, et al. 3D printing-directed auxetic kevlar aerogel architectures with multiple functionalization options[J]. Journal of Materials Chemistry A, 2020, 8(28): 14243-14253.
doi: 10.1039/D0TA02590A
[22] LIU Z, LYU J, DING Y, et al. Nanoscale kevlar liquid crystal aerogel fibers[J]. ACS Nano, 2022, 16(9): 15237-15248.
doi: 10.1021/acsnano.2c06591 pmid: 36053080
[23] ZIEGLER C, WOLF A, LIU W, et al. Modern inorganic aerogels[J]. Angewandte Chemie-International Edition, 2017, 56(43): 13200-13221.
doi: 10.1002/anie.201611552
[24] WU N, YANG Y, WANG C, et al. Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional mxene aerogels[J]. Advanced Materials, 2023. DOI: 10.1002/adma.202207969.
doi: 10.1002/adma.202207969
[25] 陈纤, 李猛猛, 赵昕, 等. 纳米芳纶气凝胶纤维的制备与微观结构调控[J]. 纺织学报, 2021, 42(11): 17-23.
CHEN Xian, LI Mengmeng, ZHAO Xin, et al. Preparation and microstructure control of aerogel fibers based on aramid nanofibers[J]. Journal of Textile Research, 2021, 42(11): 17-23.
[26] LIU Z, LYU J, FANG D, et al. Nanofibrous kevlar aerogel threads for thermal insulation in harsh environments[J]. ACS Nano, 2019, 13(5): 5703-5711.
doi: 10.1021/acsnano.9b01094 pmid: 31042355
[27] BAO Y, LYU J, LIU Z, et al. Bending stiffness-directed fabricating of kevlar aerogel-confined organic phase-change fibers[J]. ACS Nano, 2021, 15(9): 15180-15190.
doi: 10.1021/acsnano.1c05693 pmid: 34423639
[28] LI J, WANG J, WANG W, et al. Symbiotic aerogel fibers made via in-situ gelation of aramid nanofibers with polyamidoxime for uranium extraction[J]. Molecules, 2019. DOI: 10.3390/molecules24091821.
doi: 10.3390/molecules24091821
[29] MENG S, ZHANG J, XU W, et al. Structural control of silica aerogel fibers for methylene blue removal[J]. Science China (Technological Sciences), 2019, 62(6): 958-964.
doi: 10.1007/s11431-018-9389-7
[30] YANG S, XIE C, QIU T, et al. The aramid-coating-on-aramid strategy toward strong, tough, and foldable polymer aerogel films[J]. ACS Nano, 2022, 16(9): 14334-14343.
doi: 10.1021/acsnano.2c04572 pmid: 35994616
[31] LYU J, LIU Z, WU X, et al. Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth[J]. ACS Nano, 2019, 13(2): 2236-2245.
doi: 10.1021/acsnano.8b08913 pmid: 30697999
[32] SI Y, YU J, TANG X, et al. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality[J]. Nature Communications, 2014. DOI: 10.1038/ncomms6802.
doi: 10.1038/ncomms6802
[33] LI T, SONG J, ZHAO X, et al. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose[J]. Science Advances, 2018. DOI: 10.1126/sciadv.aar3724.
doi: 10.1126/sciadv.aar3724
[34] CUI Y, GONG H, WANG Y, et al. A thermally insulating textile inspired by polar bear hair[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201706807.
doi: 10.1002/adma.201706807
[35] LYU J, SHENG Z, XU Y, et al. Nanoporous kevlar aerogel confined phase change fluids enable super-flexible thermal diodes[J]. Advanced Functional Materials, 2022. DOI: 10.1002/adfm.202200137.
doi: 10.1002/adfm.202200137
[36] LYU J, WANG X, LIU L, et al. High strength conductive composites with plasmonic nanoparticles aligned on aramid nanofibers[J]. Advanced Functional Materials, 2016, 26(46): 8435-8445.
doi: 10.1002/adfm.v26.46
[37] FU C, SHENG Z, ZHANG X. Laminated structural engineering strategy toward carbon nanotube-based aerogel films[J]. ACS Nano, 2022, 16(6): 9378-9388.
doi: 10.1021/acsnano.2c02193
[38] GAN L, QIU F, YUE X, et al. Aramid nanofiber aerogel membrane extract from waste plastic for efficient separation of surfactant-stabilized oil-in-water emulsions[J]. Journal of Environmental Chemical Engineering, 2021. DOI: 10.1016/j.jece.2021.106137.
doi: 10.1016/j.jece.2021.106137
[39] SONG Q, YE F, YIN X, et al. Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding[J]. Advanced Materials, 2017. DOI: 10.1002/adma.201701583.
doi: 10.1002/adma.201701583
[40] YANG Y, LYU J, CHEN J, et al. Flame-retardant host-guest films for efficient thermal management of cryogenic devices[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202102232.
doi: 10.1002/adfm.202102232
[41] SAHA S K, WANG D, NGUYEN W H, et al. Scalable submicrometer additive manufacturing[J]. Science, 2019, 366(6461): 105-109.
doi: 10.1126/science.aax8760 pmid: 31604310
[42] TANG X, ZHOU H, CAI Z, et al. Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels[J]. ACS Nano, 2018, 12(4): 3502-3511.
doi: 10.1021/acsnano.8b00304 pmid: 29613763
[43] YANG X, SHI N, LIU J, et al. 3D printed hybrid aerogel gauzes enable highly efficient hemostasis[J]. Advanced Healthcare Materials, 2022. DOI: 10.1002/adhm.202201591.
doi: 10.1002/adhm.202201591
[44] CHENG Q, SHENG Z, WANG Y, et al. General suspended printing strategy toward programmatically spatial kevlar aerogels[J]. ACS Nano, 2022, 16(3): 4905-4916.
doi: 10.1021/acsnano.2c00720 pmid: 35230080
[1] 夏良君, 曹根阳, 刘欣, 徐卫林. 高性能纤维及其制品颜色构建的研究进展[J]. 纺织学报, 2023, 44(06): 1-9.
[2] 王青弘, 王迎, 郝新敏, 郭亚飞, 王美慧. 静电纺聚酰胺纳米纤维复合织物制备工艺优化[J]. 纺织学报, 2023, 44(06): 144-151.
[3] 吕钧炜, 罗龙波, 刘向阳. 基于直接氟化技术的芳纶表/界面结构设计与制备研究进展[J]. 纺织学报, 2023, 44(06): 21-27.
[4] 贾姣, 郑作保, 吴昊, 徐乐, 刘熙, 董凤春, 贾永堂. 静电纺聚合物复合金属有机框架功能纳米纤维膜的研究进展[J]. 纺织学报, 2023, 44(06): 215-224.
[5] 关振虹, 李丹, 宋金苓, 冷向阳, 宋西全. 易染间位芳纶的制备及其性能[J]. 纺织学报, 2023, 44(06): 28-32.
[6] 王赫, 王洪杰, 赵紫奕, 张晓婉, 孙冉, 阮芳涛. 多孔与连通结构碳纳米纤维电极的设计及其电化学性能[J]. 纺织学报, 2023, 44(06): 41-49.
[7] 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56.
[8] 韦玉辉, 郑晨, 程尔骕, 赵书涵, 苏兆伟. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 171-176.
[9] 杜迅, 陈莉, 何劲, 李晓娜, 赵美奇. 具有伤口监测功能的比色传感纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(05): 70-76.
[10] 胡蝶飞, 王琰, 姚菊明, 祝国成. 纳米纤维复合结构空气过滤材料性能研究[J]. 纺织学报, 2023, 44(05): 77-83.
[11] 周堂, 汪邓兵, 赵磊, 刘祖一, 凤权. 负载WO3的细菌纤维素/Au膜制备及其催化性能[J]. 纺织学报, 2023, 44(04): 16-23.
[12] 何满堂, 王黎明, 覃小红, 俞建勇. 静电纺纳米纤维在界面太阳能蒸汽转化应用中的研究进展[J]. 纺织学报, 2023, 44(03): 201-209.
[13] 杨广鑫, 张庆乐, 李小超, 李思瑜, 陈辉, 程璐, 夏鑫. 热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化[J]. 纺织学报, 2023, 44(03): 28-35.
[14] 吴俊雄, 尉霞, 罗璟娴, 闫姣儒, 吴磊. 阻燃腈纶/芳纶包芯纱的制备及其紫外光稳定性[J]. 纺织学报, 2023, 44(03): 60-66.
[15] 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构[J]. 纺织学报, 2023, 44(02): 27-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!