纺织学报 ›› 2023, Vol. 44 ›› Issue (06): 10-20.doi: 10.13475/j.fzxb.20230101602
• 纺织科技新见解学术沙龙专栏: 高品质芳纶生产关键技术及其产品应用 • 上一篇 下一篇
LÜ Jing, LIU Zengwei, CHENG Qingqing, ZHANG Xuetong()
摘要:
为推动芳纶纳米纤维气凝胶从实验室走向实际应用,系统介绍了芳纶纳米纤维气凝胶国内外研究现状。首先分析了气凝胶领域面临的主要困难,阐述了芳纶纳米纤维气凝胶开发的重要意义;随后介绍了构筑单元芳纶纳米纤维的制备方法及其流变学行为,为后续芳纶气凝胶材料的制备提供参考;最后重点综述了芳纶气凝胶纤维、芳纶气凝胶薄膜以及3D打印芳纶气凝胶的制备、性能及应用等研究现状,总结了制备过程中一系列新型溶胶-凝胶转变原理,概述了芳纶气凝胶材料性能提升的策略以及在热管理、智能防护和分离过滤等新兴领域中的应用前景。分析认为,芳纶纳米纤维气凝胶发展仍处于初期阶段,优化芳纶纳米纤维气凝胶制备技术、进一步提升其性能仍将是研究的热点与重点。
中图分类号:
[1] |
PIERRE A C, PAJONK G M. Chemistry of aerogels and their applications[J]. Chemical Reviews, 2002, 102(11): 4243-4265.
pmid: 12428989 |
[2] |
SOLEIMANI DORCHEH A, ABBASI M H. Silica aerogel: synthesis, properties and characterization[J]. Journal of Materials Processing Technology, 2008, 199(1-3): 10-26.
doi: 10.1016/j.jmatprotec.2007.10.060 |
[3] |
师建军, 王伟, 朱伟, 等. 柔性气凝胶材料的制备及应用研究进展[J]. 材料导报, 2022.DOI:10.11896/cldb.22040393.
doi: 10.11896/cldb.22040393 |
SHI Jianjun, WANG Wei, ZHU Wei, et al. Research progress on preparation and application of flexile aerogel materials[J]. Materials Reports, 2022.DOI:10.11896/cldb.22040393.
doi: 10.11896/cldb.22040393 |
|
[4] |
GEORGIOU E, RAPTOPOULOS G, ANASTOPOULOS I, et al. Uranium removal from aqueous solutions by aerogel-based adsorbents: a critical review[J]. Nanomaterials, 2023. DOI: 10.3390/nano13020363.
doi: 10.3390/nano13020363 |
[5] |
HUANG C, CHENG X, CHEN B, et al. Preparation of aerogel-like silica foam with the hollow-sphere-based 3D network skeleton by the cast-in situ method and ambient pressure drying[J]. Nano Letters, 2022, 22(23): 9290-9296.
doi: 10.1021/acs.nanolett.2c02768 pmid: 36404639 |
[6] |
CAI B, SAYEVICH V, GAPONIK N, et al. Emerging hierarchical aerogels: self-assembly of metal and semiconductor nanocrystals[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201707518.
doi: 10.1002/adma.201707518 |
[7] | WAN J, ZHANG J, YU J, et al. Cellulose aerogel membranes with a tunable nanoporous network as a matrix of gel polymer electrolytes for safer lithium-ion batteries[J]. ACS Applied Materials & Interfaces, 2017, 9(29): 24591-24599. |
[8] |
HU P, LYU J, FU C, et al. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films[J]. ACS Nano, 2020, 14(1): 688-697.
doi: 10.1021/acsnano.9b07459 pmid: 31851483 |
[9] | 张美云, 杨斌, 宋顺喜, 等. 先进芳纶绝缘纸基材料研究进展及展望[J]. 中国造纸, 2022, 41(11): 1-10. |
ZHANG Meiyun, YANG Bin, SONG Shunxi, et al. Progress and prospect of advanced aramid insulating paper-based materials[J]. China Pulp & Paper, 2022, 41(11):1-10. | |
[10] |
LIU W, LIU M, LIU X, et al. Recent advances of 2D materials in nonlinear photonics and fiber lasers[J]. Advanced Optical Materials, 2020. DOI: 10.1002/adom.201901631.
doi: 10.1002/adom.201901631 |
[11] | 王海宁, 万怡灶, 李建, 等. 纳米纤维组织工程支架及其纳米效应研究进展[J]. 材料导报, 2007, 21(4): 13-20. |
WANG Haining, WAN Yizao, LI Jian, et al. Research and development of nanofibrous scaffolds for tissue engineering and their nanoeffects[J]. Materials Reports, 2007, 21(4): 13-20. | |
[12] |
YANG B, WANG L, ZHANG M, et al. Fabrication, applications, and prospects of aramid nanofiber[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.202000186.
doi: 10.1002/adfm.202000186 |
[13] |
BURCH R R, SWEENY W, SCHMIDT H W, et al. Preparation of aromatic polyamide polyanions a novel processing strategy for aromatic polyamides[J]. Macromolecules, 1990, 23(4): 1065-1072.
doi: 10.1021/ma00206a026 |
[14] |
YANG M, CAO K, SUI L, et al. Dispersions of aramid nanofibers: a new nanoscale building block[J]. ACS Nano, 2011, 5(9): 6945-6954.
doi: 10.1021/nn2014003 pmid: 21800822 |
[15] |
YANG B, WANG L, ZHANG M, et al. Timesaving, high-efficiency approaches to fabricate aramid nanofibers[J]. ACS Nano, 2019, 13(7): 7886-7897.
doi: 10.1021/acsnano.9b02258 pmid: 31244045 |
[16] |
LUO J, ZHANG M, YANG B, et al. Fabrication and characterization of differentiated aramid nanofibers and transparent films[J]. Applied Nanoscience, 2018, 9(5): 631-645.
doi: 10.1007/s13204-018-0722-z |
[17] |
KOO J M, KIM H, LEE M, et al. Nonstop monomer-to-aramid nanofiber synthesis with remarkable reinforcement ability[J]. Macromolecules, 2019, 52(3): 923-934.
doi: 10.1021/acs.macromol.8b02391 |
[18] |
YAN H, LI J, TIAN W, et al. A new approach to the preparation of poly(p-phenylene terephthalamide) nanofibers[J]. RSC Advances, 2016, 6(32): 26599-26605.
doi: 10.1039/C6RA01602B |
[19] |
GREINER A, WENDORFF J H. Electrospinning: a fascinating method for the preparation of ultrathin fibers[J]. Angewandte Chemie-International Edition, 2007, 46(30): 5670-703.
doi: 10.1002/anie.200604646 pmid: 17585397 |
[20] |
YAO J, JIN J, LEPORE E, et al. Electrospinning of p-aramid fibers[J]. Macromolecular Materials and Engineering, 2015, 300(12): 1238-1245.
doi: 10.1002/mame.201500130 |
[21] |
CHENG Q, LIU Y, LYU J, et al. 3D printing-directed auxetic kevlar aerogel architectures with multiple functionalization options[J]. Journal of Materials Chemistry A, 2020, 8(28): 14243-14253.
doi: 10.1039/D0TA02590A |
[22] |
LIU Z, LYU J, DING Y, et al. Nanoscale kevlar liquid crystal aerogel fibers[J]. ACS Nano, 2022, 16(9): 15237-15248.
doi: 10.1021/acsnano.2c06591 pmid: 36053080 |
[23] |
ZIEGLER C, WOLF A, LIU W, et al. Modern inorganic aerogels[J]. Angewandte Chemie-International Edition, 2017, 56(43): 13200-13221.
doi: 10.1002/anie.201611552 |
[24] |
WU N, YANG Y, WANG C, et al. Ultrathin cellulose nanofiber assisted ambient-pressure-dried, ultralight, mechanically robust, multifunctional mxene aerogels[J]. Advanced Materials, 2023. DOI: 10.1002/adma.202207969.
doi: 10.1002/adma.202207969 |
[25] | 陈纤, 李猛猛, 赵昕, 等. 纳米芳纶气凝胶纤维的制备与微观结构调控[J]. 纺织学报, 2021, 42(11): 17-23. |
CHEN Xian, LI Mengmeng, ZHAO Xin, et al. Preparation and microstructure control of aerogel fibers based on aramid nanofibers[J]. Journal of Textile Research, 2021, 42(11): 17-23. | |
[26] |
LIU Z, LYU J, FANG D, et al. Nanofibrous kevlar aerogel threads for thermal insulation in harsh environments[J]. ACS Nano, 2019, 13(5): 5703-5711.
doi: 10.1021/acsnano.9b01094 pmid: 31042355 |
[27] |
BAO Y, LYU J, LIU Z, et al. Bending stiffness-directed fabricating of kevlar aerogel-confined organic phase-change fibers[J]. ACS Nano, 2021, 15(9): 15180-15190.
doi: 10.1021/acsnano.1c05693 pmid: 34423639 |
[28] |
LI J, WANG J, WANG W, et al. Symbiotic aerogel fibers made via in-situ gelation of aramid nanofibers with polyamidoxime for uranium extraction[J]. Molecules, 2019. DOI: 10.3390/molecules24091821.
doi: 10.3390/molecules24091821 |
[29] |
MENG S, ZHANG J, XU W, et al. Structural control of silica aerogel fibers for methylene blue removal[J]. Science China (Technological Sciences), 2019, 62(6): 958-964.
doi: 10.1007/s11431-018-9389-7 |
[30] |
YANG S, XIE C, QIU T, et al. The aramid-coating-on-aramid strategy toward strong, tough, and foldable polymer aerogel films[J]. ACS Nano, 2022, 16(9): 14334-14343.
doi: 10.1021/acsnano.2c04572 pmid: 35994616 |
[31] |
LYU J, LIU Z, WU X, et al. Nanofibrous kevlar aerogel films and their phase-change composites for highly efficient infrared stealth[J]. ACS Nano, 2019, 13(2): 2236-2245.
doi: 10.1021/acsnano.8b08913 pmid: 30697999 |
[32] |
SI Y, YU J, TANG X, et al. Ultralight nanofibre-assembled cellular aerogels with superelasticity and multifunctionality[J]. Nature Communications, 2014. DOI: 10.1038/ncomms6802.
doi: 10.1038/ncomms6802 |
[33] |
LI T, SONG J, ZHAO X, et al. Anisotropic, lightweight, strong, and super thermally insulating nanowood with naturally aligned nanocellulose[J]. Science Advances, 2018. DOI: 10.1126/sciadv.aar3724.
doi: 10.1126/sciadv.aar3724 |
[34] |
CUI Y, GONG H, WANG Y, et al. A thermally insulating textile inspired by polar bear hair[J]. Advanced Materials, 2018. DOI: 10.1002/adma.201706807.
doi: 10.1002/adma.201706807 |
[35] |
LYU J, SHENG Z, XU Y, et al. Nanoporous kevlar aerogel confined phase change fluids enable super-flexible thermal diodes[J]. Advanced Functional Materials, 2022. DOI: 10.1002/adfm.202200137.
doi: 10.1002/adfm.202200137 |
[36] |
LYU J, WANG X, LIU L, et al. High strength conductive composites with plasmonic nanoparticles aligned on aramid nanofibers[J]. Advanced Functional Materials, 2016, 26(46): 8435-8445.
doi: 10.1002/adfm.v26.46 |
[37] |
FU C, SHENG Z, ZHANG X. Laminated structural engineering strategy toward carbon nanotube-based aerogel films[J]. ACS Nano, 2022, 16(6): 9378-9388.
doi: 10.1021/acsnano.2c02193 |
[38] |
GAN L, QIU F, YUE X, et al. Aramid nanofiber aerogel membrane extract from waste plastic for efficient separation of surfactant-stabilized oil-in-water emulsions[J]. Journal of Environmental Chemical Engineering, 2021. DOI: 10.1016/j.jece.2021.106137.
doi: 10.1016/j.jece.2021.106137 |
[39] |
SONG Q, YE F, YIN X, et al. Carbon nanotube-multilayered graphene edge plane core-shell hybrid foams for ultrahigh-performance electromagnetic-interference shielding[J]. Advanced Materials, 2017. DOI: 10.1002/adma.201701583.
doi: 10.1002/adma.201701583 |
[40] |
YANG Y, LYU J, CHEN J, et al. Flame-retardant host-guest films for efficient thermal management of cryogenic devices[J]. Advanced Functional Materials, 2021. DOI: 10.1002/adfm.202102232.
doi: 10.1002/adfm.202102232 |
[41] |
SAHA S K, WANG D, NGUYEN W H, et al. Scalable submicrometer additive manufacturing[J]. Science, 2019, 366(6461): 105-109.
doi: 10.1126/science.aax8760 pmid: 31604310 |
[42] |
TANG X, ZHOU H, CAI Z, et al. Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels[J]. ACS Nano, 2018, 12(4): 3502-3511.
doi: 10.1021/acsnano.8b00304 pmid: 29613763 |
[43] |
YANG X, SHI N, LIU J, et al. 3D printed hybrid aerogel gauzes enable highly efficient hemostasis[J]. Advanced Healthcare Materials, 2022. DOI: 10.1002/adhm.202201591.
doi: 10.1002/adhm.202201591 |
[44] |
CHENG Q, SHENG Z, WANG Y, et al. General suspended printing strategy toward programmatically spatial kevlar aerogels[J]. ACS Nano, 2022, 16(3): 4905-4916.
doi: 10.1021/acsnano.2c00720 pmid: 35230080 |
[1] | 夏良君, 曹根阳, 刘欣, 徐卫林. 高性能纤维及其制品颜色构建的研究进展[J]. 纺织学报, 2023, 44(06): 1-9. |
[2] | 王青弘, 王迎, 郝新敏, 郭亚飞, 王美慧. 静电纺聚酰胺纳米纤维复合织物制备工艺优化[J]. 纺织学报, 2023, 44(06): 144-151. |
[3] | 吕钧炜, 罗龙波, 刘向阳. 基于直接氟化技术的芳纶表/界面结构设计与制备研究进展[J]. 纺织学报, 2023, 44(06): 21-27. |
[4] | 贾姣, 郑作保, 吴昊, 徐乐, 刘熙, 董凤春, 贾永堂. 静电纺聚合物复合金属有机框架功能纳米纤维膜的研究进展[J]. 纺织学报, 2023, 44(06): 215-224. |
[5] | 关振虹, 李丹, 宋金苓, 冷向阳, 宋西全. 易染间位芳纶的制备及其性能[J]. 纺织学报, 2023, 44(06): 28-32. |
[6] | 王赫, 王洪杰, 赵紫奕, 张晓婉, 孙冉, 阮芳涛. 多孔与连通结构碳纳米纤维电极的设计及其电化学性能[J]. 纺织学报, 2023, 44(06): 41-49. |
[7] | 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56. |
[8] | 韦玉辉, 郑晨, 程尔骕, 赵书涵, 苏兆伟. 光催化自清洁芳纶织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 171-176. |
[9] | 杜迅, 陈莉, 何劲, 李晓娜, 赵美奇. 具有伤口监测功能的比色传感纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(05): 70-76. |
[10] | 胡蝶飞, 王琰, 姚菊明, 祝国成. 纳米纤维复合结构空气过滤材料性能研究[J]. 纺织学报, 2023, 44(05): 77-83. |
[11] | 周堂, 汪邓兵, 赵磊, 刘祖一, 凤权. 负载WO3的细菌纤维素/Au膜制备及其催化性能[J]. 纺织学报, 2023, 44(04): 16-23. |
[12] | 何满堂, 王黎明, 覃小红, 俞建勇. 静电纺纳米纤维在界面太阳能蒸汽转化应用中的研究进展[J]. 纺织学报, 2023, 44(03): 201-209. |
[13] | 杨广鑫, 张庆乐, 李小超, 李思瑜, 陈辉, 程璐, 夏鑫. 热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化[J]. 纺织学报, 2023, 44(03): 28-35. |
[14] | 吴俊雄, 尉霞, 罗璟娴, 闫姣儒, 吴磊. 阻燃腈纶/芳纶包芯纱的制备及其紫外光稳定性[J]. 纺织学报, 2023, 44(03): 60-66. |
[15] | 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构[J]. 纺织学报, 2023, 44(02): 27-33. |
|