纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 12-22.doi: 10.13475/j.fzxb.20230101701

• 纤维材料 • 上一篇    下一篇

熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究

杨奇1, 刘高慧1, 黄琪帏1, 胡睿1, 丁彬2, 俞建勇2, 王先锋1,2()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织科技创新中心, 上海 201620
  • 收稿日期:2023-01-06 修回日期:2023-04-30 出版日期:2024-01-15 发布日期:2024-03-14
  • 通讯作者: 王先锋(1981—),男,教授,博士。主要研究方向为功能非织造材料加工与应用。E-mail:wxf@dhu.edu.cn
  • 作者简介:杨奇(1997—),男,硕士生。主要研究方向为电晕驻极非织造空气过滤材料。
  • 基金资助:
    国家自然科学基金面上项目(52273052);上海市科学技术委员会“科技创新行动计划”“一带一路”国际合作项目(21130750100)

Study on correlation between charge storage and filtration performance of melt-blown polylactic acid/polyvinylidene fluoride electret air filter materials

YANG Qi1, LIU Gaohui1, HUANG Qiwei1, HU Rui1, DING Bin2, YU Jianyong2, WANG Xianfeng1,2()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2023-01-06 Revised:2023-04-30 Published:2024-01-15 Online:2024-03-14

摘要:

针对空气颗粒物污染问题,为实现对空气中PM2.5以及其它有害颗粒物的高效过滤,从而达到保护人体生命健康的目的,将介电性与极性良好的聚偏氟乙烯(PVDF)与生物可降解的聚乳酸(PLA)熔融共混,并经过熔喷纺丝工艺结合电晕驻极,制备出具有纤维直径细、孔径小、过滤效率高、过滤阻力低的环境友好型驻极体空气过滤材料。通过系统研究PVDF对PLA电晕驻极体空气过滤材料的结晶行为、电荷存储性能及其机制与过滤性能之间的关系,发现PVDF的引入对PLA/PVDF熔喷非织造布纤维的结晶性能具有重要影响,可使PLA结晶速度加快,结晶度增加。PLA/PVDF电晕驻极熔喷布的初始表面静电势高达3 kV以上,热刺激放电测试峰值更高,电荷存储量有明显提升。特别地,在85 L/min纺丝流速下测试,PLA/PVDF单层电晕驻极熔喷非织造布过滤性可达85%,过滤阻力小于40 Pa,相较于未添加PVDF的电晕驻极熔喷非织造布过滤效率提升20%以上;探讨了电晕驻极后PLA/PVDF熔喷非织造布的电荷存储机制,发现PLA/PVDF熔喷非织造布的电荷存储性能提升最终使过滤性能提高。

关键词: 空气过滤材料, 驻极体, 熔喷, 电晕驻极, 聚乳酸, 聚偏氟乙烯

Abstract:

Objective Under the background of the continuous aggravation of air particulate matter pollution, in order to achieve efficient filtration of PM2.5 and other harmful particulate matters in the air to achieve the purpose of protecting human life and health, polyvinylidene fluoride (PVDF) with good dielectric and polarity was compounded with biodegradable polylactic acid (PLA), so as to prepare an environmentally friendly electret air filter material with fine fiber diameter, small pore size, high filtration efficiency and low filtration resistance. And the influence of PVDF on the crystallization behavior, charge storage performance and the relationship between the mechanism and filtration performance of PLA corona electret air filtration material was investigated.

Method The melt-blown nonwovens were prepared by melt blending with PLA as the substrate and PVDF as the electret additive material. The convenient and efficient corona electret process was adopted to greatly improve the filtration efficiency of the prepared PLA/PVDF melt-blown nonwovens of through electrostatic adsorption without increasing the filtration resistance. The influence of PVDF on the crystal structure of PLA and the change of crystallinity were studied by X-ray diffractometer. The influence of PVDF on the crystallization process of PLA was studied by hot stage polarizing microscope, and the charge storage performance was studied by thermally stimulated discharge tester.

Results By introducing an appropriate amount of PVDF (PLA/0.3%PVDF melt-blown nonwovens), the melt-blown nonwovens fiber is more uniform, the fiber network structure is more dense, the pores are more, the pore size is smaller, and the diameter is finer to 2.60 μm. It was found by X-ray diffractometer that the introduction of PVDF made the crystallization of PLA more orderly. The crystallinity of PLA/0.3%PVDF melt-blown fabric was the highest, reaching 16.99%. It was found by hot stage polarizing microscope that the introduction of PVDF significantly accelerated the crystallization rate of PLA. The test results of surface electrostatic meter and thermal stimulation discharge instrument show that the electrostatic potential of PLA/0.3%PVDF melt-blown nonwovens after corona electret can reach more than 3 kV, the peak value of TSD is higher, and the charge storage capacity is significantly improved. It shows that the introduction of PVDF can improve the crystallization properties of PLA and promote the crystallization process of PLA, thereby increasing the charge storage position during corona electret. The filtration efficiency of PLA/0.3%PVDF single-layer melt-blown nonwovens after corona electret reached 85%, and the filtration resistance was less than 40 Pa. Compared with the filtration efficiency of the corona electret melt-blown nonwovens without PVDF, the filtration efficiency was increased by more than 20%. The quality factor was used for comprehensively measuring the effect of air filter materials. It was found that the quality factor of PLA/0.3%PVDF melt-blown nonwovens after corona electret was higher than that of non-electret melt-blown nonwovens from less than 0.01 Pa-1 to 0.046 Pa-1. The filtration efficiency of PLA/0.3% PVDF melt-blown nonwovens decreased from 98% to 80% when the air flow rate increased from 10 L/min to 90 L/min, with the smallest decrease. It is further illustrated that the corona electret melt-blown nonwovens with an appropriate amount of PVDF has the best overall filtration performance.

Conclusion By systematically studying the relationship between the crystallization behavior, charge storage performance and filtration performance of PVDF on PLA corona electret air filter material, it is found that the introduction of PVDF has an important influence on the crystallization performance of PLA/PVDF melt-blown nonwovens. The introduction of PVDF accelerates the crystallization rate of PLA and increases the crystallinity, which leads to the improvement of charge storage performance of PLA/PVDF melt-blown nonwovens and finally improves the filtration performance. The prepared degradable high-efficiency electret air filter material can effectively cope with the increasingly severe air pollution and the continuous virus prevention and control.

Key words: air filtration material, electret, melt-blown, corona electret, polylactic acid, polyvinylidene fluoride

中图分类号: 

  • TS174.3

图1

电晕驻极PLA/PVDF熔喷布制备流程示意图"

图2

电晕驻极原理示意图"

图3

PLA及PLA/PVDF共混物的熔融指数"

图4

PLA及PLA/PVDF熔喷布扫描电镜照片"

图5

PLA及PLA/PVDF熔喷布纤维直径分布"

图6

PLA及PLA/PVDF熔喷布孔径分布"

图7

PLA及PLA/PVDF混合材料的傅里叶红外光谱图"

图8

PLA及PLA/PVDF熔喷布的X射线衍射图谱"

图9

PLA及PLA/PVDF等温结晶过程"

图10

表面静电势图像"

图11

PLA及PLA/PVDF熔喷布的热刺激放电图谱"

图12

PLA/PVDF熔喷布的电荷储存机制图"

图13

PLA、PLA/PVDF熔喷布的过滤效率与过滤阻力"

图14

不同驻极电压下PLA熔喷布过滤效率与过滤阻力"

图15

PLA及PLA/PVDF电晕驻极熔喷布的过滤效率与过滤阻力"

图16

PLA/PVDF未驻极与电晕驻极熔喷布品质因子和PLA熔喷布不同驻极电压下的品质因子"

图17

PLA/PVDF电晕驻极熔喷布在不同流速下过滤效率与过滤阻力"

图18

PLA/PVDF熔喷布与PP熔喷布力学性能对比"

图19

PLA/PVDF熔喷布与PP熔喷布过滤性能对比"

[1] ZAKRZEWSKA A, HAGHIGHAT BAYAN M A, NAKIELSKI P, et al. Nanotechnology transition roadmap toward multifunctional stimuli-responsive face masks[J]. ACS Applied Materials & Interfaces, 2022, 14(41): 46123-46144.
[2] ZHANG X, LIU J, ZHANG H, et al. Multi-layered, corona charged melt blown nonwovens as high performance PM0.3 air filters[J]. Polymers (Basel), 2021, 13(4): 485.
doi: 10.3390/polym13040485
[3] 孙焕惟, 张恒, 崔景强, 等. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(6): 86-93.
SUN Huanwei, ZHANG Heng, CUI Jingqiang, et al. Post-drawing assisted meltblown forming process of PLA nonwoven materials and its mechanical properties[J]. Journal of Textiles Research, 2022, 43(6): 86-93.
doi: 10.1177/004051757304300205
[4] 谷英姝, 汪滨, 董振峰, 等. 聚乳酸熔喷非织造材料用于空气过滤领域的研究进展[J]. 化工新型材料, 2021, 49(1): 214-217,222.
GU Yingshu, WANG Bin, DONG Zhenfeng, et al. Research progress of poly(lactic acid) meltblown nonwoven materials for air filtration[J]. New Chemical Materials, 2021, 49(1): 214-217,212.
[5] 张林, 陈明星, 郝天煦, 等. 熔喷过滤材料驻极技术的研发进展[J]. 上海纺织科技, 2022, 50(5): 6-8,37.
ZHANG Lin, CHEN Mingxing, HAO Tianxu, et al. Progress in the development of electret technology for meltblown filter materials[J]. Shanghai Textile Science and Technology, 2022, 50(5): 6-8,37.
[6] 董玉佳, 刘高慧, 陈谢宇, 等. PEG增韧聚乳酸熔喷非织造材料的制备与性能[J]. 纺织高校基础科学学报, 2022, 35(1): 14-23.
DONG Yujia, LIU Gaohui, CHEN Xieyu, et al. Preparation and properties of PEG-toughened poly(lactic acid) meltblown nonwoven materials[J]. Basic Science Journal of Textile Universities, 2022, 35(1): 14-23.
[7] ZHANG C, SUN J, LYU S, et al. Poly(lactic acid)/artificially cultured diatom frustules nanofibrous membranes with fast and controllable degradation rates for air filtration[J]. Advanced Composites and Hybrid Materials, 2022, 5: 1221-1232.
doi: 10.1007/s42114-022-00474-7
[8] YANG R, XU G, DONG B, et al. A "polymer to polymer" chemical recycling of PLA plastics by the "DE-RE polymerization" strategy[J]. Macromolecules, 2022, 55(5): 1726-1735.
doi: 10.1021/acs.macromol.1c02085
[9] 任煜, 李猛, 尤祥银. 驻极处理对聚乳酸熔喷材料性能的影响[J]. 纺织学报, 2015, 36(9): 13-7.
REN Yu, LI Meng, YOU Xiangyin. Effect of electret treatment on the performance of PLA meltblown materials[J]. Journal of Textiles Research, 2015, 36(9): 13-7.
[10] 杨吉震, 刘强飞, 何瑞东, 等. 高效低阻空气过滤材料研究进展[J]. 纺织学报, 2022, 43(10): 209-215.
YANG Jizhen, LIU Qiangfei, HE Ruidong, et al. Research progress on high efficiency and low resistance air filtration materials[J]. Journal of Textiles Research, 2022, 43(10): 209-215.
[11] 张淑苹, 赵义侠, 钱子茂, 等. 熔喷非织造过滤材料驻极技术研究进展[J]. 毛纺科技, 2022, 50(5): 117-125.
ZHANG Shuping, ZHAO Yixia, QIAN Zimao, et al. Progress of meltblown nonwoven filter material electret technology[J]. Wool Textile Journal, 2022, 50(5): 117-125.
[12] ZHANG J, CHEN G, BHAT G S, et al. Electret characteristics of melt-blown polylactic acid fabrics for air filtration application[J]. Journal of Applied Polymer Science, 2019, 137(4): 1-7.
[13] 蔡诚, 唐国翌, 宋国林, 等. 纳米SiO2驻极体/聚乳酸复合熔喷非织造材料的制备及性能[J]. 复合材料学报, 2017, 34(3): 486-493.
CAI Cheng, TANG Guoyi, SONG Guolin, et al. Preparation and properties of nano-SiO2 electret/poly(lactic acid) composite meltblown nonwoven materials[J]. Journal of Composites, 2017, 34(3): 486-493.
[14] ZHANG H, LIU J, ZHANG X, et al. Design of electret polypropylene melt blown air filtration material containing nucleating agent for effective PM2.5 capture[J]. Royal Society of Chemistry, 2018, 8(15): 7932-7941.
[15] GUZHOVA A A, GALIKHANOV M F, GOROKHOVATSKY Y A, et al. Improvement of polylactic acid electret properties by addition of fine barium titanate[J]. Journal of Electrostatics, 2016, 79: 1-6.
doi: 10.1016/j.elstat.2015.11.002
[16] SUN Q, LEUNG W W-F. Charged PVDF multi-layer filters with enhanced filtration performance for filtering nano-aerosols[J]. Separation and Purification Technology, 2019, 212: 854-876.
doi: 10.1016/j.seppur.2018.11.063
[17] 于斌, 韩建, 余鹏程, 等. 驻极体对熔喷用PLA材料热性能及可纺性的影响[J]. 纺织学报, 2013, 34(2): 82-85.
YU Bin, HAN Jian, YU Pengcheng, et al. Effect of electret on thermal properties and spinnability of PLA materials for meltblown[J]. Journal of Textile Research, 2013, 34(2): 82-85.
doi: 10.1177/004051756403400115
[18] 盛沈俊, 王昉, 牛玉芳. 微孔聚L-乳酸(PLLA)的扫描电镜分析与红外光谱分析[J]. 化学世界, 2013, 54(12): 710-713.
SHENG Shenjun, WANG Fang, NIU Yufang. Scanning electron microscopy and infrared spectroscopy of microporous poly(L-lactide) (PLLA)[J]. Chemistry World, 2013, 54(12): 710-713.
[19] 黄宁. PVDF氟碳涂料的红外谱图解析及其组分分析[J]. 涂料工业, 2003(12): 45-48,56.
HUANG Ning. Infrared spectral analysis of PVDF fluorocarbon coatings and its component analysis[J]. Coating Industry, 2003(12): 45-48,56.
[20] 咸玉龙. 聚乳酸/纤维素纳米晶复合材料的制备及其熔喷材料性能的研究[D]. 杭州: 浙江理工大学, 2021:1-61.
XIAN Yulong. Preparation of poly(lactic acid)/cellulose nanocrystalline composites and study of their meltblown material properties[D]. Hangzhou: Zhejiang University of Technology, 2021:1-61.
[21] 张剑锋. 熔喷聚乳酸空气净化材料的微观结构与驻极体性能和过滤性能相关性研究[D]. 杭州: 杭州电子科技大学, 2020:1-50.
ZHANG Jianfeng. Correlation between microstructure and electret performance and filtration performance of meltblown polylactic acid air purification materials[D]. Hangzhou: Hangzhou University of Electronic Science and Technology, 2020:1-50.
[22] 陈谢宇, 刘高慧, 董玉佳, 等. 熔喷聚丙烯水驻极非织造材料的制备及性能[J]. 纺织高校基础科学学报, 2022, 35(1): 24-33.
CHEN Xieyu, LIU Gaohui, DONG Yujia, et al. Preparation and properties of meltblown polypropylene water standing nonwoven materials[J]. Basic Science Journal of Textile Universities, 2022, 35(1): 24-33.
[23] MEUNIER M, QUIRKE N, ASLANIDES A. Molecular modeling of electron traps in polymer insulators: chemical defects and impurities[J]. The Journal of Chemical Physics, 2001, 115(6): 2876-2881.
doi: 10.1063/1.1385160
[24] 高猛, 王增元, 漏琦伟, 等. 电晕驻极熔喷聚丙烯驻极体非织造布的电荷捕获特性[J]. 纺织学报, 2021, 42(9): 52-58.
GAO Meng, WANG Zengyuan, LOU Qiwei, et al. Charge trapping properties of corona electret meltblown polypropylene electret nonwovens[J]. Journal of Textiles Research, 2021, 42(9): 52-58.
[25] XIAO H, GUI J, CHEN G, et al. Study on correlation of filtration performance and charge behavior and crystalline structure for melt-blown polypropylene electret fabrics[J]. Journal of Applied Polymer Science, 2015, 132(47):1-7.
[26] KILIC A, RUSSELL S, SHIM E, et al. The charging and stability of electret filters[M]. Sawston Cambridge: Woodhead Publishing Ltd, 2017: 95-121.
[27] LI Y, YIN X, SI Y, et al. All-polymer hybrid electret fibers for high-efficiency and low-resistance filter media[J]. Chemical Engineering Journal, 2020, 398: 1-7.
[28] XU J, XIAO X, ZHANG W, et al. Air-filtering masks for respiratory protection from PM2.5 and pandemic pathogens[J]. One Earth, 2020, 3(5): 574-589.
doi: 10.1016/j.oneear.2020.10.014
[29] GALIKHANOV M. Corona electrets based on filler-loaded polymers: structure, properties, and applic-ations[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2022, 29(3): 788-793.
doi: 10.1109/TDEI.2022.3159841
[1] 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29.
[2] 王镕琛, 张恒, 翟倩, 刘瑞焱, 黄鹏宇, 李霞, 甄琪, 崔景强. 聚乳酸超细纤维敷料的熔喷成形工艺及其快速导液特性[J]. 纺织学报, 2024, 45(01): 30-38.
[3] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[4] 孟娜, 王先锋, 李召岭, 俞建勇, 丁彬. 熔喷非织造布的驻极技术研究进展[J]. 纺织学报, 2023, 44(12): 225-232.
[5] 孙辉, 崔小港, 彭思伟, 丰江丽, 于斌. 聚乳酸/磁性金属有机框架材料复合熔喷布的制备及其空气过滤性能[J]. 纺织学报, 2023, 44(12): 26-34.
[6] 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126.
[7] 孙明涛, 陈成玉, 闫伟霞, 曹珊珊, 韩克清. 针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响[J]. 纺织学报, 2023, 44(09): 91-98.
[8] 谷英姝, 朱燕龙, 汪滨, 董振峰, 谷潇夏, 杨昌兰, 崔萌, 张秀芹. 聚乳酸/驻极体熔喷非织造材料的制备及其性能[J]. 纺织学报, 2023, 44(08): 41-49.
[9] 赵明顺, 陈枭雄, 于金超, 潘志娟. 光致变色聚乳酸纤维的纺制及其微观结构与性能[J]. 纺织学报, 2023, 44(07): 10-17.
[10] 张晋, 张林军, 解云川, 王健, 贾寅峰, 路涛, 张志成. 防护口罩用改性长效聚(偏氟乙烯-三氟乙烯)压电纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 26-32.
[11] 唐奇, 柴丽琴, 徐天伟, 王成龙, 王直成, 郑今欢. 聚乳酸/聚3-羟基丁酸-戊酸酯共混纤维及其雪尼尔纱的染色动力学[J]. 纺织学报, 2023, 44(06): 129-136.
[12] 陈卓, 戴钧明, 潘晓娣, 李沐芳, 刘轲, 赵青华. 抗菌聚丙烯熔喷材料的反应挤出法制备及其性能[J]. 纺织学报, 2023, 44(06): 57-65.
[13] 钱红飞, KOBIR MD. Foysal, 陈龙, 李林祥, 方帅军. 聚乳酸/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)共混纤维的结构及其织物染色性能[J]. 纺织学报, 2023, 44(03): 104-110.
[14] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
[15] 杨潇东, 于斌, 孙辉, 朱斐超, 刘鹏. 聚乙烯三氟氯乙烯熔喷非织造材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(02): 19-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!