纺织学报 ›› 2024, Vol. 45 ›› Issue (05): 129-137.doi: 10.13475/j.fzxb.20230102501

• 染整工程 • 上一篇    下一篇

聚氮异丙基丙烯酰胺抗菌水凝胶复合棉织物的制备及其性能

薛宝霞1,2,3, 杨色1,2, 张春艳1,2, 刘晶1,2, 刘勇3, 程伟3, 张利3, 牛梅1,2()   

  1. 1.太原理工大学 轻纺工程学院, 山西 太原 030024
    2.山西浙大新材料与化工研究院, 山西 太原 030032
    3.山西白求恩医院(山西医学科学院 同济山西医院), 山西 太原 030032
  • 收稿日期:2023-01-13 修回日期:2024-01-15 出版日期:2024-05-15 发布日期:2024-05-31
  • 通讯作者: 牛梅(1979—),女,教授,博士。研究方向为功能化与差别化新型纤维的设计。E-mail:niumei@tyut.edu.cn。
  • 作者简介:薛宝霞(1990—),女,副教授,博士。主要研究方向为纳米智能抗菌功能材料。
  • 基金资助:
    山西省自然科学基金项目(20210302124200);山西省自然科学基金项目(202103021224355);山西省自然科学基金项目(202203021211065);山西浙大新材料与化工研究院资助项目(2021SX-TD013);山西浙大新材料与化工研究院资助项目(2021SX-FR010);山西纳米药物可控缓释技术创新中心项目(20210410911026);山西省高等学校科技创新项目(2021L027)

Preparation and properties of cotton fabric with poly(N-isopropylacrylamide) antibacterial hydrogel

XUE Baoxia1,2,3, YANG Se1,2, ZHANG Chunyan1,2, LIU Jing1,2, LIU Yong3, CHENG Wei3, ZHANG Li3, NIU Mei1,2()   

  1. 1. College of Textile Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China
    2. Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, Shanxi 030032, China
    3. Shanxi Bethune Hospital (Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital), Taiyuan, Shanxi 030032, China
  • Received:2023-01-13 Revised:2024-01-15 Published:2024-05-15 Online:2024-05-31

摘要:

为扩大含银抗菌水凝胶的应用和实现缓释抗菌,采用水凝胶复合织物的构建策略,将化学交联与紫外光引发相结合,通过聚氮异丙基丙烯酰胺(PNIPAM)/载银氧化石墨烯(GO-Ag)抗菌水凝胶复合棉织物,形成新型水凝胶复合织物一体化敷料,并探讨不同层数棉织物复合水凝胶对敷料结构与抗菌性能、拉伸性能以及生物安全性等的影响。结果表明:PNIPAM/GO-Ag抗菌水凝胶与3层棉织物构筑的一体化敷料的综合性能优异;在湿态下,一体化敷料比单一棉织物的断裂强力提升73.7%,达到370 N;敷料的体外细胞毒性呈0级,溶血率小于5%,显示出良好的生物安全性;其对大肠杆菌和金黄色葡萄球菌的抗菌率均达到98%以上,在24 h内具有缓慢释放银离子的效果;抗菌作用主要通过持续释放银离子、诱导细菌产生活性氧造成其氧化损伤等多种作用,从而破坏细菌细胞结构。

关键词: 聚氮异丙基丙烯酰胺, 水凝胶, 缓释, 抗菌, 纳米银, 棉织物, 敷料

Abstract:

Objective In order to reduce the incidence of chronic wound infections, various antibacterial dressings play an important role in wound treatment, among which silver-based antibacterial hydrogel is advantageous. However, sudden release of silver antibacterial agent and poor mechanical properties of hydrogel are the two factors limit lug the application of silver-based antibacterial hydrogel in wound repair. In order to expand the application of silver-based antibacterial hydrogel and achieve sustained release antibacterial, the construction strategy of hydrogel composite fabric was adopted to prepare a new type of hydrogel composite fabric integrated dressing.

Method Combined with the chemical crosslinking and ultra violet light initiation method, the polyazoiso propyl acrylamide (PNIPAM) /silver loaded with graphene oxide (GO-Ag) hydrogel was combined with cotton fabric to form a new kind of dressing with the integration of hydrogel and fabric. The number of cotton fabric layer used for constructing dressing was explored. The structure, antibacterial properties, tensile strength, and biological safety of dressings were discussed by scanning electron microscopy, infrared spectroscopy, fluorescence inverted microscopy, etc.

Results Based on research of PNIPAM/GO-Ag composite antibacterial hydrogel, the PNIPAM/GO-Ag composite cotton fabric with different layers was constructed. According to the analysis results of microscopic morphology and molecular structure, the PNIPAM/GO-Ag hydrogel was evenly interpenetrated into cotton fabric because of the strong interface integration. Analyzing the antibacterial, mechanical, and biological properties of PNIPAM/GO-Ag hydrogel composite cotton fabric with different layers, it was found that the integrated dressing, composed of PNIPAM/GO-Ag hydrogel and three-layer cotton fabric, demonstrated excellent comprehensive performance. In contrast with the single cotton fabric, the tensile breaking strength of the integrated dressing were improved by 73.7% and reached 370 N in the wet state. This proved that the integrated structure of hydrogel composite cotton fabric could help strengthen the mechanical property of hydrogel, which is beneficial for the promotion and application of wound dressing. The in vitro cytotoxicity of dressing was 0 level, and the hemolysis rate was less than 5%, demonstrating the PNIPAM/GO-Ag hydrogel composite cotton fabric illustrated good biological safety, providing possibilities for its application in the field of wound repair. The inhibition rate of antibacterial dressing on the Escherichia coli and Staphylococcus aureus reached more than 98%. Compared with the slow-release antibacterial effect of PNIPAM/GO-Ag hydrogel, the PNIPAM/GO-Ag hydrogel composite cotton fabric developed slow-release effect of silver within 24 h, proving that the hydrogel composite fabric has a more durableability to continuously release silver release silver ions, and the slow-release antibacterial effect of dressing was enhanced. In addition, from the analysis of bacterial micro-structure and intracellular reactive oxygen species (ROS) content, it was concluded that the antibacterial effect of hydrogel composite cotton fabric was mainly achieved by continuously releasing silver ions, inducing bacteria to produce ROS and causing oxidative damage to bacteria, thereby destroying bacteria.

Conclusion The combination strategy of hydrogel composite fabric is one of the methods to construct a new integrated antibacterial dressing, which has the characteristics of both hydrogel and fabric. It was found that the interface between the hydrogel and cotton fabric directly affects the structural integrity of the overall dressing. The number of cotton fabric layer determines the interface binding force between the hydrogel and each layer of the fabric, and ultimately affects its tensile properties, antibacterial properties, and biological safety. Compared with the single cotton fabric, in the wet state, the tensile breaking strength of PNIPAM/GO-Ag composite cotton fabric integrated dressing has strengthened. And the slow-release antibacterial effect of silver ions in PNIPAM/GO-Ag composite cotton fabric is more pronounced than that of PNIPAM/GO-Ag hydrogel.

Key words: polyazoisopropylacrylamide, hydrogel, slow release, antibacterial, nano sliver, cotton fabric, dressing

中图分类号: 

  • TS115

表1

不同PNIPAM/GO-Ag水凝胶复合棉织物的工艺参数"

试样
编号
棉织物
层数
水凝胶前体溶液
的体积/mL
GO-Ag溶液
体积/mL
APS质量/
mg
0# 1 0 0 6
1# 1 1.2 1 6
2# 2 2.4 2 12
3# 3 3.6 3 18
4# 4 4.8 4 24
5# 5 6.0 5 30

图1

GO-Ag粒子与PNIPAM/GO-Ag水凝胶的微观形貌和能谱分析"

图2

PNIPAM/GO-Ag水凝胶复合棉织物的数码照片、微观形貌和能谱图"

图3

PNIPAM/GO-Ag水凝胶及其复合棉织物的红外光谱"

图4

PNIPAM/GO-Ag水凝胶复合不同层数棉织物对E.coli和S.aureus平板菌落计数结果"

表2

PNIPAM/GO-Ag水凝胶复合不同层数棉织物的拉伸性能"

试样编号 断裂强力/N 断裂伸长率/% 断裂时间/s
0# 213 103 59.6
1# 260 129 73.4
2# 320 132 95.5
3# 170 188 111.7
4# 342 159 106.5
5# 298 130 74.7

图5

PNIPAM/GO-Ag水凝胶复合不同层数棉织物的体外细胞毒性测试结果"

表3

PNIPAM/GO-Ag水凝胶复合不同层数棉织物的溶血率和体外细胞毒性测试结果"

试样编号 溶血率/% 细胞活性/% 毒性等级/级
1# 2.77 75.66 1
2# 3.67 87.09 1
3# 4.27 101.24 0
4# 6.06 84.06 1
5# 6.77 81.53 1

图6

PNIPAM/GO-Ag水凝胶及其复合棉织物的银离子释放动力学曲线"

图7

PNIPAM/GO-Ag水凝胶复合棉织物对E.coli和S.aureus作用前后细菌形态(×20 000 )"

图8

PNIPAM/GO-Ag水凝胶复合棉织物对E.coli和S.aureus的ROS测试结果"

[1] WANG H N, XU Z J, ZHAO M, et al. Advances of hydrogel dressings in diabetic wounds[J]. Biomaterials Science, 2021, 9(5): 1530-1546.
doi: 10.1039/d0bm01747g pmid: 33433534
[2] 吴倩倩, 李珂, 杨立双, 等. 载药聚偏氟乙烯伤口敷料的制备及其性能[J]. 纺织学报, 2020, 41(1):26-31.
WU Qianqian, LI Ke, YANG Lishuang, et al. Preparation and properties of drug-loaded polyvinylidene fluoride wound dressings[J]. Journal of Textile Research, 2020, 41(1):26-31.
[3] PENG Y, HE D F, GE X, et al. Construction of heparin-based hydrogel incorporated with Cu-5.4O ultrasmall nanozymes for wound healing and inflammation inhibition[J]. Bioactive Materials, 2021, 6(10): 3109-3124.
[4] BLANCO G E, SOUZA C W, BWENARDO M P, et al. Antimicrobially active gelatin/[Mg-Al-CO3]-LDH composite films based on clove essential oil for skin wound healing[J]. Materials Today Communications, 2021. DOI:10.1016/j.mtcomm.2021.102169.
[5] HE Y X, LI Y, SUN Y D, et al. A double-network polysaccharide-based composite hydrogel for skin wound healing[J]. Carbohydrate Polymers, 2021. DOI:10.1016/j.carbpol.2021.117870.
[6] CHENG H, SHI Z, YUE K, et al. Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities[J]. Acta Biomaterialia, 2021, 124: 219-232.
doi: 10.1016/j.actbio.2021.02.002 pmid: 33556605
[7] JACOB S, NAIR A B, SHAH J, et al. Emerging role of hydrogels in drug delivery systems, tissue engineering and wound management[J]. Pharmaceutics, 2021. DOI:10.3390/pharmaceutics13030357.
[8] XIU Z M, ZHANG Q B, PUPPALA H L, et al. Negligible particle-specific antibacterial activity of silver nanoparticles[J]. Nano Letters, 2012, 12(8): 4271-4275.
[9] MARAMBIO J C, HOEK E M. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment[J]. Journal of Nanoparticle Research, 2010, 12: 1531-1551.
[10] 高党鸽, 李亚娟, 吕斌, 等. 纳米银制备及其在纺织品中的应用研究进展[J]. 纺织学报, 2018, 39(8):171-178.
GAO Dangge, LI Yajuan, LÜ Bin, et al. Research progress in preparation of nano silver and its application in textiles[J]. Journal of Textile Research, 2018, 39(8):171-178.
[11] CHEN G H, WENG W G, WU D J, et al. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique[J]. Carbon, 2004, 42(4): 753-759.
[12] BARINOV A, MALCIOGLU O B, FABRIS S, et al. Initial stages of oxidation on graphitic surfaces: photoemission study and density functional theory calculations[J]. The Journal of Physical Chemistry C, 2009, 113(21): 9009-9013.
[13] SU Y X, LI T, MAO Y Y, et al. High-efficiency antibacterial and barrier properties of natural rubber/graphene oxide@Ag/carboxymethyl chitosan compo-sites[J]. Polymer-Plastics Technology and Materials, 2023, 62(3): 270-280.
[14] SIRAJUL H, MARIA R, FARID M, et al. Antibacterial and antioxidant screening applications of reduced-graphene oxide modified ternary SnO2-NiO-CuO nanocomposites[J]. Arabian Journal of Chemistry, 2023. DOI: 10.1016/j.arabjc.2023.104917.
[15] CAI X, LIN M, TAN S Z, et al. The use of polyethyleneimine-modified reduced graphene oxide as a substrate for silver nanoparticles to produce a material with lower cytotoxicity and long-term antibacterial activity[J]. Carbon, 2012, 50(10): 3407-3415.
[16] LIAO M J, ZHAO Y Y, PAN Y, et al. A good adhesion and antibacterial double-network composite hydrogel from PVA, sodium alginate and tannic acid by chemical and physical cross-linking for wound dressings[J]. Journal of Materials Science, 2023, 58(13): 5756-5772.
[17] 于志财, 刘金如, 何华玲, 等. 基于高分子水凝胶的阻燃织物研究与应用进展[J]. 纺织学报, 2021, 42(9): 180-186.
YU Zhicai, LIU Jinru, HE Hualing, et al. Research and application progress of flame retardant fabric based on polymer hydrogel[J]. Journal of Textile Research, 2021, 42(9): 180-186.
[18] 冉换换. 基于碳点和聚多巴胺的新型纳米材料的制备及其在抗菌方面的应用[D]. 南京: 东南大学, 2020:56-61.
RAN Huanhuan. Preparation of novel nanomaterials based on carbon point and polydopamine and their application in antibacterial activity[D]. Nanjing: Southeast University, 2020:56-61.
[19] MAZUR P, SKIBA-KUREK I, MROWIEC P, et al. Synergistic ROS-associated antimicrobial activity of silver nanoparticles and gentamicin against staphylococcus epidermidis[J]. International Journal of Nanomedicine, 2020, 15(1): 3551-3562.
[20] GAO Y, GE X J, CHEN L, et al. Study on silver species released from silver nanotextiles by single particle inductively coupled plasma-mass spectro-metry[J]. Chinese Journal of Analytical Chemistry, 2021, 49(2): 271-281.
[21] 钟言沁. 丝素蛋白基静电纺多级复合纤维敷料的制备及性能研究[D]. 天津: 天津工业大学, 2021:40-54.
ZHONG Yanqin. Preparation and properties of multistage composite fiber dressing based on silk fibroin electrostatic spinning[D]. Tianjin: Tiangong University, 2021:40-54.
[22] ZARE G M, DAEMI H, MOHAMMADI J, et al. Improving anti-hemolytic, antibacterial and wound healing properties of alginate fibrous wound dressings by exchanging counter-cation for infected full-thickness skin wounds[J]. Materials Science and Engineering: C, 2020. DOI:10.1016/j.msec.2019.110321.
[23] 马跃, 郭静, 殷聚辉, 等. 纤维素/氧化纤维素/南极磷虾蛋白复合抗菌纤维的制备与表征[J]. 纺织学报, 2020, 41(11): 34-40.
doi: 10.13475/j.fzxb.20200307207
MA Yue, GUO Jing, YIN Juhui, et al. Preparation and characterization of cellulose/dialdehyde cellulose/Antarctic krill protein antibacterial fibers[J]. Journal of Textile Research, 2020, 41(11):34-40.
doi: 10.13475/j.fzxb.20200307207
[24] 朱飞, 杨雪, 苏静, 等. 酶促咖啡酸制备超疏水棉织物及其油水分离应用研究[J]. 材料导报, 2023, 4(16): 1-12.
ZHU Fei, YANG Xue, SU Jing, et al. Application of superhydrophobic cotton fabric prepared by enzymatic caffeic acid and its oil-water separation[J]. Materials Reports, 2023, 4(16):1-12.
[25] MEENA K, MUTHU K, MEENATCHI V, et al. Spectrochimica acta part a: molecular and biomolecular spectroscopy[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2014, 124: 663-669.
[26] IBRAHIM E H, KILANY M, GHRAMH H A, et al. Cellular proliferation/cytotoxicity and antimicrobial potentials of green synthesized silver nano-particles (AgNPs) using Juniperus procera[J]. Saudi Journal of Biological Sciences, 2019, 26(7): 1689-1694.
[1] 韩华, 胡安然, 孙艺文, 丁作伟, 李伟, 张彩云, 郭增革. 碘释放抗菌涂层棉织物的制备及其在伤口修复中的应用[J]. 纺织学报, 2024, 45(05): 113-120.
[2] 陈锦苗, 李纪伟, 陈萌, 宁新, 崔爱华, 王娜. 壳聚糖微纳米纤维复合抗菌空气滤材的制备及其性能[J]. 纺织学报, 2024, 45(05): 19-26.
[3] 贾琳, 董晓, 王西贤, 张海霞, 覃小红. 聚己内酯/MgO复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(04): 59-66.
[4] 刘懿德, 李凯, 姚久勇, 成芳芳, 夏延致. 纤维素水凝胶纤维的制备及其阻燃传感性能[J]. 纺织学报, 2024, 45(04): 1-7.
[5] 向娇娇, 柳浩, 欧阳申珅, 马万彬, 柴丽琴, 周岚, 邵建中, 刘国金. 高疏水性双面结构生色棉织物的一步法制备[J]. 纺织学报, 2024, 45(04): 111-119.
[6] 李丽丽, 袁亮, 唐雨霞, 杨文菊, 王浩. 聚多巴胺/壳聚糖改性棉织物的茶色素染色及其抗菌和防紫外线性能[J]. 纺织学报, 2024, 45(03): 106-113.
[7] 郑晓頔, 盛平厚, 蒋佳岑, 李睿, 焦红娟, 邱志成. 铜改性抗菌防螨聚酰胺6纤维的制备及其性能[J]. 纺织学报, 2024, 45(03): 19-27.
[8] 方进, 张广知, 徐珍珍. 点击化学在功能纺织品制备中的应用研究进展[J]. 纺织学报, 2024, 45(03): 227-235.
[9] 田博阳, 王向泽, 杨湙雯, 吴晶. 非对称结构纤维膜的制备及其热调控性能[J]. 纺织学报, 2024, 45(02): 11-20.
[10] 孙浪涛, 杨宇珊. 调温抗菌微胶囊的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(02): 171-178.
[11] 顾佳华, 戴鑫鑫, 邹专勇, 刘诗仪, 张显涛, 韩旭, 陆斌, 张寅江. 表面刻蚀/聚硅氧烷修饰纯棉水刺材料的制备及其性能[J]. 纺织学报, 2024, 45(02): 189-197.
[12] 史玉磊, 曲连艺, 刘江龙, 徐英俊. 氧化锌/儿茶酚甲醛树脂微球抗菌粘胶纤维的制备及其性能[J]. 纺织学报, 2024, 45(02): 21-27.
[13] 杨智超, 刘淑强, 吴改红, 贾潞, 张曼, 李甫, 李慧敏. 可吸收手术缝合线研究进展[J]. 纺织学报, 2024, 45(01): 230-239.
[14] 王镕琛, 张恒, 翟倩, 刘瑞焱, 黄鹏宇, 李霞, 甄琪, 崔景强. 聚乳酸超细纤维敷料的熔喷成形工艺及其快速导液特性[J]. 纺织学报, 2024, 45(01): 30-38.
[15] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!