纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 112-119.doi: 10.13475/j.fzxb.20230103301
池盼盼1, 梅琛楠1, 王焰2, 肖红2, 钟跃崎1,3()
CHI Panpan1, MEI Chennan1, WANG Yan2, XIAO Hong2, ZHONG Yueqi1,3()
摘要:
针对迷彩单兵识别存在伪装对象与背景高度相似融合、目标尺寸小等问题,提出了基于边缘填充的单兵迷彩伪装小目标检测模型BFNet(boundary-filled network)。该网络以SCNet(sparse complex-valued neural network)作为骨干网络,在网络的边缘引导阶段,利用边缘先验信息以及边缘的周围环境来挖掘目标信息。在上下文聚合阶段,利用上一级的预测值,使网络学习预测背景与前景的相互关系。实验结果表明:与最先进的BGNet相比,BFNet平均精度提升了0.74%,交并比识别率提升了1.35%,同时自适应E度量、加权F度量以及结构相似度与加权自适应F度量均得到了提高,其中,自适应E度量提升了0.85%,加权F度量提升了0.71%,证明所提出的BFNet能在更大程度上识别出单兵迷彩伪装小目标,且识别精度也得到提升。
中图分类号:
[1] |
TANKUS A, YESHURUN Y. Convexity-based visual camouflage breaking[J]. Computer Vision and Image Understanding, 2009, 82(3):208-237.
doi: 10.1006/cviu.2001.0912 |
[2] | NAGABHUSAN U N. Camouflage defect identification: a novel approach[C]// 9th International Conference on Information Technology (ICIT'06). Orlando FL: IEEE Computer Society, 2006: 145-148. |
[3] | SENGOTTUVELAN P, WAHI A, SHANMUGAM A. Performance of decamouflaging through exploratory image analysis[C]// 2008 First International Conference on Emerging Trends in Engineering and Technology. Nagpur: IEEE Computer Society, 2008: 6-10. |
[4] |
ZHENG Yunfei, ZHANG Xiongwei, CAO Tieyong, et al. Detection of people with camouflage pattern via dense deconvolution network[J]. IEEE Signal Processing Letters, 2019, 26(1):29-33.
doi: 10.1109/LSP.2018.2825959 |
[5] | FANG Zheng, ZHANG Xiongwei, DENG Xiaotong, et al. Camouflage people detection via strong semantic dilation network[C]// Proceedings of the ACM Turing Celebration Conference-China. New York: Association for Computing Machinery, 2019:1-7. |
[6] | SUN Yujia, CHEN Geng, ZHOU Tao, et al. Context-aware cross-level fusion network for camouflaged object detection[C]// Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence Main Track: IJCAI, 2021:1025-1031. |
[7] | YANG F, ZHAI Q, LI X, et al. Uncertainty-guided transformer reasoning for camouflaged object detec-tion[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE/CVF, 2021: 4146-4155. |
[8] |
LE T N, NGUYEN T V, NIE Z, et al. Anabranch network for camouflaged object segmentation[J]. Computer Vision and Image Understanding, 2019, 184: 45-56.
doi: 10.1016/j.cviu.2019.04.006 |
[9] | ZHAI Qiang, LI Xin, YANG Fan, et al. Mutual graph learning for camouflaged object detection[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE/CVF, 2021: 12997-13007. |
[10] | CHEN Tianyou, XIAO Jin, HU Xiaoguang, et al. Boundary-guided network for camouflaged object detection[J]. Knowledge-Based Systems, 2022.DOI:10.1016/j.knosys.2022.108901. |
[11] | LV Y, Zhang J, DAI Y, et al. Simultaneously localize, segment and rank the camouflaged objects[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE/CVF, 2021: 11591-11601. |
[12] |
FAN Dengping, JI Gepeng, CHENG Mingming, et al. Concealed Object Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44(10): 6024-6042.
doi: 10.1109/TPAMI.2021.3085766 |
[13] | MEI Haiyang, JI Gepeng, WEI Ziqi, et al. Camouflaged object segmentation with distraction mining[C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE/CVF, 2021: 8772-8781. |
[14] | SUN Yujia, WANG Shuo, CHEN Chenglizhao, et al. Boundary-guided camouflaged object detection[C]// Proceedings of the IEEE/CVF International Conference on Computer Vision. Montreal: IEEE/CVF, 2022:1335-1341. |
[15] | LIU Jiangjiang, HOU Qibin, CHENG Mingming, et al. Improving convolutional networks with self-calibrated convolutions[C]// 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE/CVF, 2020:10093-10102. |
[16] |
WEI Jun, WANG Shuhui, HUANG Qingming. F3NET: fusion, feedback and focus for salient object detection[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(7):12321-12328.
doi: 10.1609/aaai.v34i07.6916 |
[17] | XIE Enze, WANG Wenjia, WANG Wenhai, et al. Segmenting transparent objects in the wild[C]// Computer Vision-ECCV 2020: 16th European Conference. Berlin:Springer-Verlag, 2020:696-711. |
[18] | PERAZZI F, KRAHENBULHL P, PRITCH Y, et al. Saliency filters: Contrast based filtering for salient region detection[C]// 2012 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE/CVF, 2012: 733-740. |
[19] |
FAN Dengping, JI Gepeng, CHENG Mingming, et al. Cognitive vision inspired object segmentation metric and loss function[J]. Scientia Sinica Informationis, 2021, 51(9):1475-1489.
doi: 10.1360/SSI-2020-0370 |
[20] | MARGOLIN Ran, ZELNIK-MANOR L, TAL A. How to evaluate foreground maps?[C]// 2014 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2014: 248-255. |
[21] | FAN Dengping, CHENG Mingming, LIU Yun, et al. Structre-measure: a new way to evaluate foreground maps[C]// 2017 IEEE International Conference on Computer Vision (ICCV). Piscataway: IEEE, 2017:4558-4567. |
[1] | 陆伟健, 屠佳佳, 王俊茹, 韩思捷, 史伟民. 基于改进残差网络的空纱筒识别模型[J]. 纺织学报, 2024, 45(01): 194-202. |
[2] | 杨宏脉, 张效栋, 闫宁, 朱琳琳, 李娜娜. 一种高鲁棒性经编机上断纱在线检测算法[J]. 纺织学报, 2023, 44(05): 139-146. |
[3] | 顾冰菲, 张健, 徐凯忆, 赵崧灵, 叶凡, 侯珏. 复杂背景下人体轮廓及其参数提取[J]. 纺织学报, 2023, 44(03): 168-175. |
[4] | 李杨, 彭来湖, 李建强, 刘建廷, 郑秋扬, 胡旭东. 基于深度信念网络的织物疵点检测[J]. 纺织学报, 2023, 44(02): 143-150. |
[5] | 陈佳, 杨聪聪, 刘军平, 何儒汉, 梁金星. 手绘草图到服装图像的跨域生成[J]. 纺织学报, 2023, 44(01): 171-178. |
[6] | 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227. |
[7] | 安亦锦, 薛文良, 丁亦, 张顺连. 基于图像处理的纺织品耐摩擦色牢度评级[J]. 纺织学报, 2022, 43(12): 131-137. |
[8] | 陈金广, 李雪, 邵景峰, 马丽丽. 改进YOLOv5网络的轻量级服装目标检测方法[J]. 纺织学报, 2022, 43(10): 155-160. |
[9] | 江慧, 马彪. 基于服装风格的款式相似度算法[J]. 纺织学报, 2021, 42(11): 129-136. |
[10] | 杨争妍, 薛文良, 张传雄, 丁亦, 马颜雪. 基于生成式对抗网络的用户下装搭配推荐[J]. 纺织学报, 2021, 42(07): 164-168. |
[11] | 许倩, 陈敏之. 基于深度学习的服装丝缕平衡性评价系统[J]. 纺织学报, 2019, 40(10): 191-195. |
[12] | 刘正东, 刘以涵, 王首人. 西装识别的深度学习方法[J]. 纺织学报, 2019, 40(04): 158-164. |
[13] | 汪珊娜 张华熊 康锋. 基于卷积神经网络的领带花型情感分类[J]. 纺织学报, 2018, 39(08): 117-123. |
[14] | 何晓昀 韦平 张林 邓斌攸 潘云峰 苏真伟. 基于深度学习的籽棉中异性纤维检测方法[J]. 纺织学报, 2018, 39(06): 131-135. |
|