纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 59-67.doi: 10.13475/j.fzxb.20230103501
CAO Jingzhe, TAO Chen(), BAI Linlin
摘要:
为快速有效地模拟织物下垂过程、再现真实织物的悬垂形态解决织物约束形态的仿真问题,提出一个变形网格模型用于再现织物悬垂。在模型理论方面,围绕约束因子与衰减因子构建织物内部约束,通过接触-抵消机制复现织物柔性体与刚性平面的接触。在模型精度上,从网格规模和推演算法2个方面展开探讨,提出了合理的网格规模以达成效果与资源的平衡,并通过三阶泰勒展开减小了运算误差,提升了算法精度。本研究提出的变形网格模型,将悬垂视为动态变化的过程,实现了悬垂形态与悬垂过程的统一。模拟实验表明,真实织物内部的相互作用在模型理论及参数中得到了高度凝练的表达,体现模型特性的虚拟悬垂系数完整覆盖其实际取值区间,波纹不匀作为另一重要形态指标也得到充分表现,模型算法的精度较常规方法提升一个数量级。
中图分类号:
[1] | 郑天勇. 变化组织的三维外观模拟[J]. 纺织学报, 2005, 26(6): 39-42. |
ZHENG Tianyong. 3D appearance imitation of fancy weaves[J]. Journal of Textile Research, 2005, 26(6): 39-42. | |
[2] | 赖安琪, 蒋高明, 李炳贤. 全成形毛衫花式结构三维仿真[J]. 纺织学报, 2023, 44(2): 103-110. |
LAI Anqi, JIANG Gaoming, LI Bingxian. Three-dimensional simulation of whole garment with fancy structures[J]. Journal of Textile Research, 2023, 44(2): 103-110. | |
[3] | KANG Moon Koo, LEE Jeongjin. A real-time cloth draping simulation algorithm using conjugate harmonic functions[J]. Computers & Graphics, 2007, 31(2): 271-279. |
[4] | 沈毅, 齐红衢. 织物悬垂形态的模拟仿真[J]. 纺织学报, 2010, 31(10): 34-39. |
SHEN Yi, QI Hongqu. Simulation of fabric draping shape[J]. Journal of Textile Research, 2010, 31(10): 34-39. | |
[5] | JIA Lu, ZHENG Chao. Dynamic cloth simulation by isogeometric analysis[J]. Computer Methods In Applied Mechanics and Engineering, 2014. DOI: 10.1016/j.cma.2013.09.016. |
[6] | DENG Daiguo, WU Hefeng, SUN Peng, et al. A new geometric modeling approach for woven fabric based on frenet frame and spiral equation[J]. Journal of Computational and Applied Mathematics, 2018, 329: 84-94. |
[7] | WANG Huamin, O'BRIEN James, RAMAMOORTHI Ravi. Data-driven elastic models for cloth: modeling and measurement[J]. ACM Transactions on Graphics, 2011, 30(4): 1-12. |
[8] | 余志才. 基于三维模型和深度学习的织物悬垂性能研究[D]. 上海: 东华大学, 2020:7-29. |
YU Zhicai. Research on fabric draping performance based on 3D model and deep learning[D]. Shanghai: Donghua University, 2020: 7-29. | |
[9] |
YAN Jiang, GUO Ruiliang, MA Fenfen, et al. Cloth simulation for Chinese traditional costumes[J]. Multimedia Tools and Applications, 2019, 78(4): 5025-5050.
doi: 10.1007/s11042-018-5983-8 |
[10] | SZE K Y, LIU X H. Fabric drape simulation by solid-shell finite element method[J]. Finite Elements in Analysis and Design, 2007, 43(11): 819-838. |
[11] | XIE Q, SZE K Y, ZHOU Y X. Drape simulation using solid-shell elements and adaptive mesh subdivision[J]. Finite Elements in Analysis and Design, 2015. DOI:10.1016/j.finel.2015.08.001. |
[12] | HAN Mingu, CHANG Seunghwan. Draping simulations of carbon/epoxy fabric prepregs using a non-orthogonal constitutive model considering bending behavior[J]. Composites Part A: Applied Science and Manufacturing, 2021. DOI:10.1016/j.compositesa.2021.106483. |
[13] | ZHANG Jiahua, GEORGE Baciu, JUSTIN Cameron, et al. Particle pair system: an interlaced mass-spring system for real-time woven fabric simulation[J]. Textile Research Journal, 2012, 82(7): 655-666. |
[14] | YIN Chen, WANG Q Jane, ZHANG Mengqi. Accurate simulation of draped fabric sheets with nonlinear modeling[J]. Textile Research Journal, 2021, 92(3/4): 539-560. |
[15] | MOZAFARY Vajiha, PEDRAM Payvandy. Introducing and optimizing a novel mesh for simulating knitted fabric[J]. Journal of the Textile Institute, 2018, 109(2): 202-218. |
[16] | FITAS Ricardo, STEFAN Hesseler, SANTINO Wist, et al. Kinematic draping simulation optimization of a composite B-pillar geometry using particle swarm optimization[J]. Heliyon, 2022.DOI:10.1016/j.heliyon.2022.e11525. |
[1] | 徐辉, 朱昊, 潘苏情, 史红艳, 应迪. 基于变截面复丝模型的机织物模拟[J]. 纺织学报, 2024, 45(05): 70-78. |
[2] | 李新彤, 高哲, 顾洪阳, 丛洪莲. 针织西服面料的挺括风格研究[J]. 纺织学报, 2020, 41(11): 53-58. |
[3] | 刘成霞 周澳. 利用十字交叉法测试织物弯曲悬垂性[J]. 纺织学报, 2018, 39(06): 42-46. |
[4] | 张继东 薛元 张杰 郭明瑞 魏晓婷 高卫东 . 应用混色纱纹理信息的纬编针织物模拟[J]. 纺织学报, 2017, 38(07): 148-154. |
[5] | 李哲. 面料性能与缩褶吃量的相关性[J]. 纺织学报, 2009, 30(9): 98-101. |
[6] | 张瑞林;王文正;郭炜杰. 一种改进的织物外观真实感模拟高效算法[J]. 纺织学报, 2009, 30(05): 126-129. |
[7] | 林志贵;房 伟;黄伟志. 基于支持向量机的织物悬垂性能评估分析[J]. 纺织学报, 2009, 30(01): 51-54. |
[8] | 陈明;周华;杨兰君;李斌. 织物三维悬垂形态测试指标与三维重建[J]. 纺织学报, 2008, 29(9): 51-55. |
[9] | 陈莉;叶介茂. 基于数学函数的针织物花型设计方法初探[J]. 纺织学报, 2008, 29(7): 38-40. |
[10] | 李强;过玉清;纪峰. 基于仰视投影的织物悬垂性测试方法[J]. 纺织学报, 2008, 29(3): 34-37. |
[11] | 沈毅;周华;尹红媛. ZYF-3型织物悬垂三维测试仪的研制[J]. 纺织学报, 2008, 29(1): 118-122. |
[12] | 刘玄木;沈毅;王寿兵. 织物悬垂测试系统中织物边缘的识别[J]. 纺织学报, 2006, 27(3): 8-10. |
[13] | 黄新林;李汝勤. 织物静态悬垂系数试验时间的确定[J]. 纺织学报, 2006, 27(10): 14-17. |
[14] | 张森林;姜位洪. 织物计算机模拟设计的实现[J]. 纺织学报, 2004, 25(06): 81-84. |
[15] | 赵丽红. 用支持向量机预测织物的悬垂性能[J]. 纺织学报, 2004, 25(06): 71-73. |
|