纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 39-45.doi: 10.13475/j.fzxb.20230204001

• 纤维材料 • 上一篇    下一篇

废旧棉/纳米纤维素自增强复合纸的制备与性能

刘鑫1,2, 王婵1,2, 窦皓1,2, 孟家光1,2, 陈莉1,2, 樊威1,2()   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.西安工程大学 功能性纺织材料及制品教育部重点实验室, 陕西 西安 710048
  • 收稿日期:2023-02-17 修回日期:2024-03-04 出版日期:2024-06-15 发布日期:2024-06-15
  • 通讯作者: 樊威(1986—),男,教授,博士。主要研究方向为三维纺织复合材料结构与性能、智能纤维及智能可穿戴、废旧纺织品高值化利用以及安全防护用纺织品。E-mail: fanwei@xpu.edu.cn
  • 作者简介:刘鑫(1996—),男,硕士生。主要研究方向为废旧纺织品高值化利用。
  • 基金资助:
    国家自然科学基金项目(52073224);陕西省杰出青年科学基金项目(2024JC-JCQN-03);西安市科技局先进制造业技术攻关项目(21XJZZ0019);西安工程大学研究生创新基金项目(chx2022002)

Preparation and properties of waste cotton/cellulose nanofiber self-reinforcing composite paper

LIU Xin1,2, WANG Chan1,2, DOU Hao1,2, MENG Jiaguang1,2, CHEN Li1,2, FAN Wei1,2()   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Material and Product, Ministry of Education, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2023-02-17 Revised:2024-03-04 Published:2024-06-15 Online:2024-06-15

摘要:

针对机械开松回收后产生的废旧棉短纤维存在力学性能差且难以再利用的问题,将部分回收的废旧棉短纤维在2,2,6,6-四甲基哌啶-1-氧自由基(TEMPO)/NaBr/NaClO体系中氧化,制备成纳米纤维素(CNF),然后将不同质量分数的CNF悬浮液和回收的废旧棉短纤维充分混合制备全纤维素纸浆,最后通过湿法成网和热压技术形成全纤维素纤维自增强复合纸(CCP),并探究其形貌、力学性能以及增强机制。结果表明:当CNF质量分数增加至5%时,CCP中的氢键含量增加,CNF和棉短纤维之间形成了广泛的氢键交联,促成CCP形成了致密的结构,其拉伸断裂强度达到84.72 MPa。此外,采用不脱色废旧棉短纤维制备的CCP可加工为包装纸袋使用。

关键词: 废旧棉, 纳米纤维素, 回收利用, 复合纸, 自增强, 湿法成网, 热压技术

Abstract:

Objective Cotton waste accounts for 35%-40% of the global textiles waste of more than 100 million tons annually, with a low recycling rate of less than 30%. In particular, the fallen cotton fibers less than 7 mm during the mechanical opening process are not used because they are too short to be processed into fiber nets or other forms of textiles. It is imperative for such short cotton fibers with or without dyes to be recycled to avoid environmental pollution and recycle these high-quality cellulose resources.

Method Aiming at the problems that the waste cotton short fibers produced after mechanical opening and recycling have poor mechanical properties and are difficult to reuse, the part recovered waste cotton short fibers were oxidized in 2,2,6,6-tetramethylpiperidine-1-oxide radical (TEMPO)/NaBr/NaClO system to prepare cellulose nanofiber (CNF). CNF suspension with different concentrations and recycled waste cotton short fibers were thoroughly mixed to prepare all cellulose pulp. Finally, the full cellulose fiber self-reinforced composite paper (CCP) was formed by wet-laid forming and hot-pressing technology. The CCP was prepared from waste denim to maximize the use of very short cotton fibers. The morphology, mechanical properties, and reinforcement mechanism of CPP were characterized and analyzed.

Results CNF was successfully prepared by the TEMPO oxidation method, and the obtained CNF had a regular long strips with the length of about 0.8-1.2 μm and the diameter of about 10-35 nm. The FI-TR showed that there were absorption peaks corresponding to —COOH or its derivatives at 1 755 cm-1 and 1 670 cm-1. This indicated that the cotton short fiber was successfully oxidized by the TEMPO/NaBr/NaClO oxidation system to introduce carboxyl groups and transferred into CNF. In the aspect of CCP morphology, the surface pores of CCP decreased significantly with the increase of CNF concentration, leading to dense structure of CCP, and the pores on the surface and cross section of CCP with 5% CNF were filled. This indicates that CNF as a reinforcing agent in the pulp can bind closely to the pulp fibers. It effectively fills the pores between the cellulose fibers, making the paper form a dense structure. Moreover, the mechanical properties of CCP kept increasing with the increase of CNF concentration. The tensile strength of CCP with 0% CNF was 11.20 MPa, and that of CCP with 5% CNF was 4.72 MPa. It was also found that the maximum increase of CCP with 5% CNF in bursting strength and in tearing strength was 2.5 times and 1.8 times higher than those of 0% CNF. In addition, the XPS results showed that the relative content of C2 (C—OH) increased continuously from 37.03% for 1% CNF to 72.03% for 5% CNF and the relative content of O1s1 (C—OH…O) increased from 52.44% for 1% CNF to 72.29% for CCP with 5% CNF. This indicates that the hydrogen bonding content of CCP increases with with higher CNF concentration.

Conclusion The TEMPO/NaBr/NaClO oxidation system was utilized to introduce carboxyl groups on the cellulose surface, and CNF was successfully prepared. The addition of CNF effectively improved the mechanical properties of CCP. The CNF formed an extensive cross-linked network with the recycled cotton short fibers through hydrogen bonding, which facilitated the self-reinforcing effect of cellulose. Since CCP is composed of all-cellulose material, it has good sustainability and can be applied in green packaging. This work can be further explored in the future to develop special papers (e.g., banknote paper and other security papers), different sensors as components of smart packaging.

Key words: waste cotton, cellulose nanofiber, recycling, composite paper, self-reinforcing, wet-laid web, hot pressing technique

中图分类号: 

  • TS119

图1

废旧牛仔制备CCP的工艺流程图"

表1

梳理机工艺参数"

梳理机部件 电动机频率/Hz 速度/(m·min-1)
进料 12 0.74
锡林 25 723.75
道夫 22 8.14

图2

TEMPO氧化法制备纳米纤维素"

图3

不同放大倍数下的纳米纤维素透射电镜图"

图4

CNF的红外光谱图"

图5

含不同质量分数CNF的CCP扫描电镜照片"

图6

不同质量分数CNF的CCP的拉伸断裂强度"

图7

含不同质量分数CNF的CCP的耐破与撕裂强度"

图8

不同CNF质量分数样品的XPS图谱"

图9

3种样品的C1s和O1s XPS能谱"

表2

C1s和O1s结合形式在3个样品中的相对含量"

样品 含量
C1 C2 C3 O1s1 O1s2
1% CNF-CCP 41.27 37.03 21.70 52.44 47.56
3% CNF-CCP 18.22 40.69 41.09 57.56 42.44
5% CNF-CCP 11.73 72.03 16.24 72.29 27.71

图10

环保纸袋的制备流程图"

[1] 樊威, 刘红霞, 陆琳琳, 等. 废旧天然纤维纺织品回收利用现状及高值化利用策略[J]. 纺织学报, 2022, 43(5): 49-56.
FAN Wei, LIU Hongxia, LU LinLin, et al. Progress in recycling waste natural fiber textiles and hight-value utilization strategy[J]. Journal of Textile Research, 2022, 43(5): 49-56.
[2] DU W, ZHENG J, LI W, et al. Efficient recognition and automatic sorting technology of waste textiles based on online near infrared spectroscopy and convolutional neural network[J]. Resources, Conservation and Recycling, 2022. DOI: 10.1016/j.resconrec.2022.106157.
[3] LU L, FAN W, MENG X, et al. Current recycling strategies and high value utilization of waste cotton[J]. The Science of The Total Environment, 2022. DOI: 10.1016/j.scitotenv.2022.158798.
[4] WANG S, ZHANG T, FAN W, et al. Development of 3D needled composite from denim waste and polypropylene fibers for structural applications[J]. Construction and Building Materials, 2022. DOI: 10.1016/j.conbuildmat.2021.125583.
[5] YOUSEF S, HAMDY M, TATARIANTS M, et al. Sustainable industrial technology for recovery of cellulose from banknote production waste and reprocessing into cellulose nanocrystals[J]. Resources, Conservation and Recycling, 2019, 149: 510-520.
[6] 王营超, 贺会利, 王强, 等. 纤维素纳米晶体提高箱纸板强度性能的研究[J]. 中国造纸, 2020, 39(12): 18-25.
WANG Yingchao, HE Huili, WANG Qiang, et al. Improving the strength properties of liner board by cellulose nanocrystal[J]. China Pulp & Paper, 2020, 39(12): 18-25.
[7] 黄强. 纤维素在造纸原料中的应用研究[J]. 造纸装备及材料, 2020, 49(2): 26.
HUANG Qiang. Research on the application of cellulose in papermaking materials[J]. Papermaking Equipment and Materials, 2020, 49(2): 26.
[8] YU X, FAN W, GE S, et al. Twisting in improving processing of waste-derived yarn into high-performance reinforced composite[J]. Journal of Cleaner Production, 2021. DOI: 10.1016/j.jclepro.2021.128446.
[9] PENA-PICHARDO P, MARTINEZ-BARRERA G, MARTINEZ-LOPEZ M, et al. Recovery of cotton fibers from waste Blue-Jeans and its use in polyester concrete[J]. Construction and Building Materials, 2018,177: 409-416.
[10] MENG X, FAN W, MAHARI W A W, et al. Production of three-dimensional fiber needle-punching composites from denim waste for utilization as furniture mate-rials[J]. Journal of Cleaner Production, 2021. DOI: 10.1016/j.jclepro.2020.125321.
[11] MENG X, FAN W, DOU H, et al. Recycling of denim fabric wastes into high-performance composites using the needle-punching nonwoven fabrication route[J]. Textile Research Journal, 2019, 90: 695-709.
[12] CHEN G, ZHANG C, WANG X, et al. Fabrication of tailored carboxymethyl-functionalized cellulose nanofibers via chemo-mechanical process from waste cotton textile[J]. Cellulose, 2021, 92: 161-169.
[13] YANG X, BISWAS S, HAN J, et al. Surface and interface engineering for nanocellulosic advanced materials[J]. Advanced Materials, 2020. DOI: 10.1002/adma.202002264.
[14] HU F, ZENG J, CHENG Z, et al. Cellulose nanofi-brils(CNFs) produced by different mechanical methods to improve mechanical properties of recycled paper[J]. Carbohydrate Polymers, 2021. DOI: 10.1016/j.carbpol.2020.117474.
[15] TAIPALE T, STERBERG MNYKÄNEN. A. Effect of microfibrillated cellulose and fines on the drainage of Kraft pulp suspension and paper strength[J]. Cellulose, 2010, 17(5): 1005-1020.
[16] KUMAR V, PATHAK P, BHARDWAJ N. Facile chemo-refining approach for production of micro-nanofibrillated cellulose from bleached mixed hardwood pulp to improve paper quality[J]. Carbohydrate Polymers, 2020. DOI: 10.1016/j.carbpol.2020.116186.
[17] KUANG Y, CHEN G, MING S, et al. Solvent resistance of 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) treated cellulose nanofiber film for flexible electronics[J]. Cellulose, 2016, 23: 1979-1987.
[18] 王胜丹. 微纳米纤丝纤维素的绿色制备及其在纸张中的应用研究[D]. 广州: 华南理工大学, 2019: 47-49.
WANG Shengdan. Study on green preparation of micro/nano-fibrils cellulose and its application in paper sheets[D]. Guangzhou: South China University of Technology, 2019: 47-49.
[19] LU L, FAN W, MENG X, et al. Modal analysis of 3D needled waste cotton fiber/epoxy composites with experimental and numerical methods[J]. Textile Research Journal, 2020,91, 358-372.
[20] FAN C, LIU T, GAO X, FAN W, et al. Needling model for predicting mechanical behaviours of waste cotton composites[J]. International Journal of Mechanical Sciences, 2023. DOI: 10.1016/j.ijmecsci.2023.108548.
[21] SAITO T, KIMURA S, NISHIYAMA Y, et al. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose[J]. Biomacromolecules, 2007, 8(8):2485-2491.
doi: 10.1021/bm0703970 pmid: 17630692
[22] LIU H X, FAN W, MIAO Y P, et al. Closed-loop recycling of colored regenerated cellulose fibers from the dyed cotton textile waste[J]. Cellulose, 2022, 30: 2597-2610.
[23] 柴清仪, 苑国祥. 激光雕刻技术在礼服面料上的应用[J]. 纺织科技进展, 2022(6): 44-46.
CHAI Qingyi, YUAN Guoxiang. Application of laser engraving technology in dress fabric[J]. Progress in Textile Science & Technology, 2022(6): 44-46.
[1] 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25.
[2] 王伟, 吴嘉欣, 张晓云, 张传杰, 宫兆庆. 制浆用废旧棉织物的脱色性能及其机制[J]. 纺织学报, 2023, 44(07): 175-183.
[3] 邢剑, 张书诚, 于天娇, 唐文斌, 王亮, 徐珍珍, 梁波涛. 废弃聚苯硫醚纤维的回收再利用研究进展[J]. 纺织学报, 2023, 44(04): 222-229.
[4] 陈龙, 周哲, 张军, 徐世美, 倪延朋. 废旧棉与涤纶纺织品化学法循环再生利用的研究进展[J]. 纺织学报, 2022, 43(05): 43-48.
[5] 李琴, 李兴兴, 解芳芳, 周文龙, 陈恺宜, 刘宇清. 静电纺丝和炭化法制备纳米纤维素储能材料研究进展[J]. 纺织学报, 2022, 43(05): 178-184.
[6] 孔维庆, 胡述锋, 俞森龙, 周哲, 朱美芳. 木质纤维素功能材料的研究进展[J]. 纺织学报, 2022, 43(04): 1-9.
[7] 李兴兴, 李琴, 岳甜甜, 刘宇清. 微纳米纤维素材料的微流控制备技术研究进展[J]. 纺织学报, 2022, 43(04): 180-186.
[8] 吴嘉茵, 王汉琛, 黄彪, 卢麒麟. 氯离子响应性纳米纤维素荧光水凝胶的构筑[J]. 纺织学报, 2022, 43(02): 44-52.
[9] 金耀峰, 刘雷艮, 王薇, 陆鑫. 纳米纤维素室温诱导下的金红石型纳米二氧化钛制备及其紫外线屏蔽性能[J]. 纺织学报, 2022, 43(02): 176-182.
[10] 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52.
[11] 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19.
[12] 王世贤, 降帅, 李萌萌, 刘丽芳, 张丽. 硅烷偶联剂改性纳米纤维素气凝胶的制备及其表征[J]. 纺织学报, 2020, 41(03): 33-38.
[13] 陈欣, 张家琳, 王纪冬, 李晓强, 葛明桥. 电絮凝技术在废弃涤纶醇解液脱色中的应用[J]. 纺织学报, 2019, 40(10): 98-104.
[14] 辛民岳, 郑强, 吴江丹, 梁列峰. 同轴静电纺多孔氧化锌薄膜制备及其光催化性能[J]. 纺织学报, 2019, 40(10): 42-47.
[15] 杨棹航 关晓宇 钱晓明. 合成纤维在湿法非织造技术及其应用[J]. 纺织学报, 2016, 37(06): 163-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!