纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 11-15.doi: 10.13475/j.fzxb.20230204501

• 纤维材料 • 上一篇    下一篇

桑蚕的强制牵伸抽丝及其纤维性能

刘术, 侯腾, 周乐乐, 李祥龙, 杨斌()   

  1. 浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
  • 收稿日期:2023-02-20 修回日期:2023-11-22 出版日期:2024-06-15 发布日期:2024-06-15
  • 通讯作者: 杨斌(1966—),女,教授,博士。主要研究方向为蚕丝结构与性能。E-mail:yangbin5959@zstu.edu.cn
  • 作者简介:刘术(1998—),女,硕士生。主要研究方向为高性能蚕丝纤维的制备及应用。
  • 基金资助:
    浙江省自然科学基金项目(Y21E030049)

Properties of Bombyx mori silkworm silk obtained by forced reeling

LIU Shu, HOU Teng, ZHOU Lele, LI Xianglong, YANG Bin()   

  1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2023-02-20 Revised:2023-11-22 Published:2024-06-15 Online:2024-06-15

摘要:

为提升蚕丝的力学性能,采用一种圆锥斜面牵伸装置对五龄桑蚕进行强制牵伸抽丝以制备高强牵伸丝,研究不同牵伸速度对桑蚕牵伸丝形貌、力学性能的影响,并将牵伸丝与蚕丝进行对比与分析。结果表明:由强制抽丝获得的牵伸丝表面光滑平坦,丝胶均匀附着;随着牵伸速度的增加,牵伸丝截面逐渐向弓形转变;牵伸丝的综合力学性能显著优于蚕丝,且其断裂强度、弹性模量、断裂比功与断裂伸长率随着牵伸速度的增加均有不同程度的增加;其中,以接近桑蚕自然吐丝速度(1 cm/s)牵伸制备的牵伸丝的断裂强度与蚕丝相当,约为3.00 cN/dtex,但其弹性模量(93.10 cN/dtex)远高于蚕丝(76.90 cN/dtex);当牵伸速度增加至4 cm/s时,可获得力学性能最佳的牵伸丝,其断裂伸长率为22.49%,断裂强度为3.39 cN/dtex,弹性模量为95.76 cN/dtex,断裂比功为0.62 cN/dtex,相比于蚕丝的平均值分别提高了7%、13.76%、24.53%、31.91%。

关键词: 桑蚕, 蚕丝, 强制抽丝, 牵伸丝, 力学性能

Abstract:

Objective Bombyx mori silk fibers have an interesting and elaborate structure, but its mechanical properties are inferior to spider dragline silk. Therefore, it is of great significance to prepare Bombyx mori silk comparable to spider silk. Traditional silk processing technology, however, is difficult to enhance the performance of cocoon silk, and even damage its morphology and properties. In addition, artificial silk produced by a variety of spinning methods cannot fully replicate the properties of natural silk. Herein, we proposed a simple and effective strategy for preparing high-strength Bombyx mori silk, which not only retains the hierarchical structure of natural silk, but also advances its mechanical properties.

Method Inspired by spider silking, this work designed a conical forced reeling device that can consistently reel silk from the fifth instar silkworm at controlled reeling speed. In this study, the silkworms were forcibly reeled at 1-4 cm/s, resulting in the force-reeled silk fibers (FRSF-1, FRSF-2, FRSF-3, and FRSF-4). During forced reeling, the silk was fully stretched due to a recombination of the reeling force and the gravity of silkworm, which increased the orientation and crystallinity of FRSFs. Meanwhile, the cocoon silk fibers (CSFs) selected from the same batch were set as a control group. In addition, the characteristic of fiber morphology, fineness, and mechanical properties of all silk samples were performed.

Results The FRSFs have a smooth and uniform morphology, and a bow-shaped cross-section, which differs significantly from that of CSFs. Specifically, the transversal surface of FRSF-1 is almost a round triangular cross-section shaped like CSFs, and both the rounded triangular and bow-shaped cross-section appeared in FRSF-2. With the reeling speed further increasing, only bow-shaped transverse section can be found in FRSF-3 and FRSF-4. Furthermore, the mechanical properties including breaking elongation, stress, elastic modulus, and specific work of rupture of FRSFs are superior to that of CSFs. First of all, the stress of FRSFs increases with reeling speed increasing. More specifically, the stress of FRSF-1 is approximately 3.0 cN/dtex, which is similar to CSFs. In addition, the stress of the FRSF-2, FRSF-3, FRSF-4 increases to 3.20 cN/dtex, 3.34 cN/dtex, and 3.39 cN/dtex, respectively, with the increasing reeling speed. As for the elastic modulus, there is a clear phenomenon that the modulus of FRSFs is obviously larger than that of the CSFs, and increases with reeling speed. Accordingly, FRSF-1 has an elastic modulus of 93.10 cN/dtex, while the elastic modulus of CSFs is 76.90 cN/dtex. Besides, the specific work of rupture of FRSF-1, FRSF-2, FRSF-3, and FRSF-4 is as follows: 0.54 cN/dtex, 0.55 cN/dtex, 0.60 cN/dtex, and 0.62 cN/dtex. In contrast, the specific work of rupture of CFSs is 0.47 cN dtex. Moreover, the breaking elongation of FRSFs increases after force-reeling and shows a similar value with increasing reeling speed. As a result, the FRSF-4 exhibits integrated mechanical properties of superior breaking elongation (22.49%), excellent strength (3.39 cN/dtex), outstanding elastic modulus (95.76 cN/dtex), and supreme specific work of fracture (0.62 cN/dtex), which increases by 7%, 13.76%, 24.53%, and 31.91%, as compared to the average values of CSFs.

Conclusion In summary, the FRSFs with smooth morphology and improved mechanical properties was achieved by force-reeling. Notably, stress of the FRSFs increases as the reeling speed increases, and the elastic modulus of all these FRSFs is significantly higher than that of CSFs. This is due to the strong shear effect of the high-speed stretch that facilitates the orientation of the nanofibrils and improves the crystal structure of the nanocrystallites, thereby promoting the mechanical properties of FRSFs. The obtained FRSFs with satisfying elongation, high strength, superior modulus, and specific work of rupture broaden its application prospects in impact-resisting materials, biomedical materials, smart textiles and wearable electronics. Besides, the forced reeling processes and device need to be further modified to reduce the unstability of reeling tension and the fluctuation of fiber fineness.

Key words: Bombyx mori silkworm, silk, forced reeling, force-reeled silk, mechanical property

中图分类号: 

  • TS102.3

图1

强制牵伸抽丝装置"

表1

人工强制抽丝参数表"

样品编号 样品名称 牵伸速度/(cm·s-1)
CSF 蚕丝
FRSF-1 牵伸丝 1
FRSF-2 牵伸丝 2
FRSF-3 牵伸丝 3
FRSF-4 牵伸丝 4

图2

蚕丝与牵伸丝表面与横截面的SEM照片"

图3

蚕丝与牵伸丝的比应力-应变曲线"

表2

蚕丝与牵伸丝的力学性能"

样品
编号
断裂伸长
率/%
断裂强度/
(cN·dtex-1)
弹性模量/
(cN·dtex-1)
断裂比功/
(cN·dtex-1)
CSF 21.02 2.98 76.90 0.47
FRSF-1 22.77 3.01 93.10 0.54
FRSF-2 21.53 3.20 93.17 0.55
FRSF-3 23.60 3.34 93.33 0.60
FRSF-4 22.49 3.39 95.76 0.62
[1] HEIM M, KEERL D, SCHEIBEL T. Spider silk: from soluble protein to extraordinary fiber[J]. Angewandte Chemie International Edition, 2009, 48(20): 3584-3596.
[2] KOH L D, CHENG Y, TENG C P, et al. Structures, mechanical properties and applications of silk fibroin materials[J]. Progress in Polymer Science, 2015, 46: 86-110.
[3] LIU Q, WANG X, TAN X, et al. A strategy for improving the mechanical properties of silk fiber by directly injection of ferric ions into silkworm[J]. Materials & Design, 2018, 146: 134-141.
[4] ORTLEPP C S, GOSLINE J M. Consequences of forced silking[J]. Biomacromolecules, 2004, 5(3): 727-731.
pmid: 15132653
[5] WANG Y, REN J, LV Z, et al. Direct functionalization of natural silks through continuous force-reeling technique[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2022.134901.
[6] LIN S, WANG Z, CHEN X, et al. Ultrastrong and highly sensitive fiber microactuators constructed by force-reeled silks[J]. Advanced Science, 2020. DOI: 10.1002/advs.201902743.
[7] 丝绸文化与产品编写组. 蚕丝的来源(3):蚕丝的加工[J]. 现代丝绸科学与技术, 2017, 32(5): 31-32.
Silk Culture and Product Writing Group. PSource of silk (3): processing of silk[J]. Modern Silk Science & Technology, 2017, 32(5): 31-32.
[8] SHAO Z, VOLLRATH F. Surprising strength of silkworm silk[J]. Nature, 2002, 418(6899): 741-741.
[9] KAWAHARA Y, YOSHIOKA T, MINAMI H, et al. Forcibly spinning using Bombyx mori silkworm anesthetized by the water narcosis treatment[J]. Journal of Natural Fibers, 2019, 18: 419-429.
[10] MORTIMER B, HOLLAND C, VOLLRATH F. Forced reeling of Bombyx mori silk: separating behavior and processing conditions[J]. Biomacromolecules, 2013, 14(10): 3653-3659.
doi: 10.1021/bm401013k pmid: 24004380
[11] KATAOKA K, UEMATSU I. Studies on liquid silk: fiber fomation of liquid silk in spinneret[J]. Kobunshi Ronbunshu, 1977, 34(6): 457-464.
[12] ASAKURA T, UMEMURA K, NAKAZAWA Y, et al. Some observations on the structure and function of the spinning apparatus in the silkworm Bombyx mori[J]. Biomacromolecules, 2007, 8(1): 175-181.
pmid: 17206804
[13] HOU T, LI X, LIU S, et al. High-performance artificially reeled silkworm silk via a multi-task and high-efficiency centrifugal reeling technique and its application in soft actuators[J]. Materials Horizons, 2023. DOI: 10.1039/d3mh 00494e.
[14] XU G, GONG L, YANG Z, et al. What makes spider silk fibers so strong? from molecular-crystallite network to hierarchical network structures[J]. Soft Matter, 2014, 10 (13): 2116-2123.
doi: 10.1039/c3sm52845f pmid: 24652059
[15] QIU W, PATIL A, HU F, et al. Hierarchical structure of silk materials versus mechanical performance and mesoscopic engineering principles[J]. Small, 2019.DOI: 10.1002/smll.201903948.
[16] KHAN M M, MORIKAWA H, GOTOH Y, et al. Structural characteristics and properties of Bombyx mori silk fiber obtained by different artificial forcibly silking speeds[J]. International Journal of Biological Macromolecules, 2008, 42(3): 264-270.
doi: 10.1016/j.ijbiomac.2007.12.001 pmid: 18221782
[1] 徐豫松, 周杰, 甘佳怡, 张涛, 张先明. 含磷氮水性聚氨酯的制备及其在涤纶织物阻燃整理中应用[J]. 纺织学报, 2024, 45(07): 112-120.
[2] 黄晴, 苏振岳, 周一帆, 刘青松, 李懿, 赵萍, 王鑫. 饲料与桑叶饲喂的家蚕蚕丝品质分析[J]. 纺织学报, 2024, 45(05): 1-9.
[3] 陈锟, 许晶莹, 郑怡倩, 李加林, 洪兴华. 丝网印刷还原氧化石墨烯改性蚕丝织物的导电与电热性能[J]. 纺织学报, 2024, 45(03): 122-128.
[4] 谷金峻, 魏春艳, 郭紫阳, 吕丽华, 白晋, 赵航慧妍. 棉秆皮微晶纤维素/改性氧化石墨烯阻燃纤维的制备及其性能[J]. 纺织学报, 2024, 45(01): 39-47.
[5] 陈美玉, 李立凤, 董侠. 长碳链聚酰胺1012纤维在不同温度下的力学性能[J]. 纺织学报, 2023, 44(11): 9-18.
[6] 谭婷, 李哲阳, 马明波, 周文龙. 天然绿色蚕丝抗氧化组分向皮肤迁移的特性研究[J]. 纺织学报, 2023, 44(10): 75-80.
[7] 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10.
[8] 何铠君, 沈加加, 刘国金. 石墨烯改性蚕丝的制备方法及其应用研究进展[J]. 纺织学报, 2023, 44(09): 223-231.
[9] 张颖, 宋明根, 姬洪, 陈康, 张先明. 热定形工艺对高强型聚酯工业丝结构性能的影响[J]. 纺织学报, 2023, 44(09): 43-51.
[10] 孙明涛, 陈成玉, 闫伟霞, 曹珊珊, 韩克清. 针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响[J]. 纺织学报, 2023, 44(09): 91-98.
[11] 施静雅, 王慧佳, 易雨青, 李妮. 聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 26-33.
[12] 赵明顺, 陈枭雄, 于金超, 潘志娟. 光致变色聚乳酸纤维的纺制及其微观结构与性能[J]. 纺织学报, 2023, 44(07): 10-17.
[13] 段成红, 吴港本, 罗翔鹏. 基于DIGIMAT的碳纤维增强环氧树脂编织复合材料的力学性能[J]. 纺织学报, 2023, 44(07): 126-131.
[14] 蒋之铭, 张超, 张晨曦, 朱平. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(06): 161-167.
[15] 宋洁, 蔡涛, 郑福尔, 郑环达, 郑来久. 涤纶针织鞋材超临界CO2无水染色性能[J]. 纺织学报, 2023, 44(05): 46-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!