纺织学报 ›› 2024, Vol. 45 ›› Issue (07): 63-71.doi: 10.13475/j.fzxb.20230205001

• 纺织工程 • 上一篇    下一篇

机织角联锁变密度复合材料的面外压缩力学特性

王遵钦, 刘东炎, 王晓旭, 张典堂()   

  1. 生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
  • 收稿日期:2023-02-21 修回日期:2023-09-28 出版日期:2024-07-15 发布日期:2024-07-15
  • 通讯作者: 张典堂(1986—),男,研究员,博士。主要研究方向为先进纺织复合材料设计及制造。E-mail: zhangdiantang@jiangnan.edu.cn
  • 作者简介:王遵钦(1998—),男,硕士生。主要研究方向为先进纺织复合材料。
  • 基金资助:
    国家自然科学基金项目(11702115);国家自然科学基金项目(12072131);江苏省优秀青年基金项目(BK20211583);173重点项目(FW-KY-104-2023-015)

Out-of-plane compression properties of angle interlock composites with variable densities

WANG Zunqin, LIU Dongyan, WANG Xiaoxu, ZHANG Diantang()   

  1. Key Laboratory of Eco-Textiles(Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2023-02-21 Revised:2023-09-28 Published:2024-07-15 Online:2024-07-15

摘要:

为研究变密度结构设计对三维机织角联锁复合材料面外力学性能的影响,设计制备了三维机织角联锁不变密度复合材料、三维机织角联锁经纱变密度复合材料和三维机织角联锁纬纱变密度复合材料。结合扫描电子显微镜、数字图像相关技术和X射线计算机断层扫描等检测技术,对角联锁变密度复合材料的面外压缩力学行为、内部损伤量化和渐进损伤等进行了测试与表征。研究结果表明:上疏下密角联锁纬纱变密度复合材料展现出优异的压缩性能,其压缩比强度比不变密度复合材料高3.40%;同时,上疏下密角联锁纬纱变密度复合材料损伤体积仅为11.64 mm3,远低于不变密度复合材料的26.90 mm3。进一步分析得到,不变密度复合材料压缩破坏以剪切失效为主,而上疏下密角联锁纬纱变密度复合材料则为基体开裂。

关键词: 角联锁织物, 碳/环氧复合材料, 变密度结构设计, 面外压缩, 计算机断层扫描技术, 损伤机制

Abstract:

Objective Angle interlock composites have been widely used in defense engineering fields because of their excellent interlayer delamination performance, strong designability, near-clean forming and other characteristics, and can still maintain good structural integrity after post-processing. In recent years, major equipment components in the air, sky and sea have increasingly high requirements for lightweight, and, therefore, it is urgent to carry out innovative structural design and application of angle interlock composites to effectively reduce structural parameters and improve load-bearing efficiency. Among them, angle interlock composite with variable densities provides an effective means to realize the "light-strength coordination" of components.

Method In order to explore the influence of warp density or weft density on compression mechanical properties of angle interlock carbon/epoxy composites, the T700-12K carbon fiber was selected. Then three-dimensional (3-D) woven angle interlock composites with variable warp density or weft density and constant warp and weft density were prepared by resin transfer molding (RTM). On this basis, combined with digital image correlation technology (DIC), the out-of-plane compression test was carried out, and the damage morphology and damage distribution inside the samples were analyzed by scanning electron microscopy and computed tomography (Micro-CT). Finally, the progressive damage evolution process and failure mechanism of out-of-plane compression were sorted out.

Results All samples showed yield failure characteristics. In addition, by comparing with the compression specific strength and compression specific modulus of 5 types of composites, it was found that the compression specific modulus of samples with variable densities was significantly improved. Among them, the compressive specific strength of the warp yarn is dense at the top and sparse at the bottom composites (BJ-MS) sample was 4.36% higher than that of the warp yarn is sparse on the top and dense on the BJ-SM sample, and the compressive specific strength of the weft yarn is sparse on the top and dense on the BW-SM sample was 15.72% higher than that of he weft yarn is dense at the top and sparse at the BW-MS sample. In the warp and weft density remain unchanged composites (JZ) sample under compression load, the maximum strain first appeared at both ends of the sample. When the strain is 4.06%, a large range of stress concentration occurred in the middle region. Thus the continuously deformed resin matrix was first destroyed along the thickness direction, and then the load was transferred to the fiber bundle. Finally, there is an obvious kink phenomenon on the curved warp yarn. In the BJ sample under compression load, a large curved strain band appeared in the region with large warp density (strain 4.06%). With increase of the displacement, BJ sample finally developed a large range of delamination in the region with large warp density. For the BW sample under compression load, there is not only a large curved strain band, but also a kinking phenomenon in the area of small weft density (strain 4.06%). In addition, the damage of BW samples is slight in the area of larger weft density. According to the CT results, the interfacial cracks of the angle interlock composites were curved warp and straight weft. The damage volume and proportion of JZ samples were the largest, which were 26.90 mm3 and 3.09%, respectively. Moreover, as seen from the CT injury image the damage modes of the angle interlocking composites included matrix cracking, fiber debonding, fiber fracture and delamination.

Conclusion It can be concluded from the research that the variable density structural design is beneficial to improve the out-of-plane bearing capacity, and decrease the damage degree of the angle interlock composites. Because the bending degree of yarn varies with yarn density, the stress distribution along the thickness direction is affected. In addition, a variety of nondestructive testing methods can effectively reveal the damage process and mechanism of angle interlock composites. In the further study of three-dimensional woven angle interlock carbon/epoxy composites, it is necessary to develop a high-fidelity numerical simulation method. By establishing an accurate meso-structural model, researchers can effectively realize the prediction of progressive damage and failure mechanism.

Key words: angle interlock fabric, carbon/epoxy composite, variable density structural design, out-of-plane compression, computed tomography technology, damage mechanisms

中图分类号: 

  • TB332

表1

角联锁变密度碳纤维/环氧树脂复合材料结构参数"

试样编号 层数 经密/(根·(10 cm) -1) 纬密/(根·(10 cm) -1) 总质量/g 纤维体积分数/% 尺寸(长×宽×高)/mm
JZ 11 60 24 587.80 51.80 220×220×8.32
BJ 9 60(1~6层)
90(7~9层)
24 584.90 48.60 220×220×8.38
BW 9 60 22(1~3层)
26(4~9层)
555.10 44.80 220×220×8.08

图1

角联锁碳纤维/环氧树脂复合材料试样示意图"

图2

结合DIC的压缩试验设备与试样实物图"

图3

角联锁碳纤维/环氧树脂复合材料应力-应变曲线"

图4

角联锁碳纤维/环氧树脂复合材料比强度和比模量"

图5

角联锁碳纤维/环氧树脂复合材料加载方向应变场"

图6

角联锁碳纤维/环氧树脂复合材料损伤形貌"

图7

压缩后角联锁碳纤维/环氧树脂复合材料内部裂纹分布"

图8

压缩后角联锁碳纤维/环氧树脂复合材料损伤的体积及占比"

图9

Micro-CT 图中角联锁碳纤维/环氧树脂复合材料的损伤形貌"

[1] 陈利, 焦伟, 王心淼, 等. 三维机织复合材料力学性能研究进展[J]. 材料工程, 2020, 48(8): 62-72.
doi: 10.11868/j.issn.1001-4381.2020.000210
CHEN Li, JIAO Wei, WANG Xinmiao, et al. Research progress on mechanical properties of 3D woven composites[J]. Journal of Materials Engineering, 2020, 48(8): 62-72.
doi: 10.11868/j.issn.1001-4381.2020.000210
[2] YANG T, QIU H, LIU X, et al. Micro-CT based statistical geometry modeling and numerical verification of 2.5D SiCf/SiC composite[J]. Applied Composite Materials, 2021, 28(3): 835-854.
[3] 陈利, 赵世博, 王心淼. 三维纺织增强材料及其在航空航天领域的应用[J]. 纺织导报, 2018, (S1): 80-87.
CHEN Li, ZHAO Shibo, WANG Xinmiao. Application of 3D textile reinforcements in the aerospace field[J]. China Textile Leader, 2018, (S1): 80-87.
[4] 陈利, 陈冬, 容治军, 等. 涡轮发动机复合材料叶片用增强织物研究进展[J]. 天津工业大学学报, 2018, 37(6): 30-35.
CHEN Li, CHEN Dong, RONG Zhijun, et al. Research progress of reinforced fabric of composite blade for turbo engine[J]. Journal of Tianjin Polytechnic University, 2018, 37(6): 30-35.
[5] LIU X, WU Q, YU G, et al. Failure behavior of the ceramic thin-walled cylindrical shell under the hydrostatic pressure[J]. Composite Structures, 2022. DOI: 10.1016/j.compstruct.2022.115828.
[6] GU Y, ZHANG D, ZHANG Z, et al. Torsion damage mechanisms analysis of two-dimensional braided composite tubes with digital image correction and X-ray micro-computed tomography[J]. Composite Structures, 2021, 256.
[7] 张一帆, 马明, 陈利. 多层多向织物复合材料力学性能分析[J]. 宇航材料工艺, 2013, 43(2): 31-34.
ZHANG Yifan, MA Ming, CHEN Li. Mechanical properties of composites reinforced by multi-ply multi-axial preforms[J]. Aerospace Materials and Technology, 2013, 43(2): 31-34.
[8] 焦亚男, 仇普霞, 纪高宁, 等. 经纬向纤维体积比例对2.5D机织复合材料力学性能的影响[J]. 天津工业大学学报, 2015, 34(3): 1-5.
JIAO Yanan, QIU Puxia, JI Gaoning, et al. Mechanical properties of 2.5D woven composites with different volume rates in warp and weft directions[J]. Journal of Tianjin Polytechnic University, 2015, 34(3): 1-5.
[9] 杨甜甜, 王岭, 邱海鹏, 等. 三维机织角联锁SiCf/SiC复合材料弯曲性能及损伤机制[J]. 纺织学报, 2020, 41(12):73-80.
doi: 10.13475/j.fzxb.20200402708
YANG Tiantian, WANG Ling, QIU Haipeng, et al. Bending properties and damage mechanism of three-dimensional woven angle interlocking SiCf/SiC composites[J]. Journal of Textile Research, 2020, 41(12):73-80.
doi: 10.13475/j.fzxb.20200402708
[10] LI W, QIAO Y, FENNER J, et al. Elastic and fracture behavior of three-dimensional ply-to-ply angle interlock woven composites: through-thickness, size effect, and multiaxial tests[J]. Composites Part C: Open Access, 2021. DOI: 10.1016/j.jcomc.2020.100098.
[11] YANG X, AI J, ZHU H, et al. Multi-directional compression behaviors and failure mechanisms of 3D orthogonal woven composites: parametric modeling and strength prediction[J]. Materials & Design, 2022. DOI: 10.1016/j.matdes.2022.111108.
[12] ZHANG D, WAAS A, YEN C. Progressive damage and failure response of hybrid 3D textile composites subjected to flexural loading, part I: experimental studies[J]. International Journal of Solids and Structures, 2015 (75-76): 309-320.
[13] LIANG Q, LIU J, WANG X, et al. Flexural progressive failure mechanism of hybrid 3D woven composites: combination of X-ray tomography, acoustic emission and digital image correlation[J]. Composite Structures, 2022. DOI: 10.1016/j.compstruct.2021.114894.
[14] LI Z, GUO L, ZHANG L, et al. In situ experimental investigation on the out-plane damage evolution of 3D woven carbon-fiber reinforced composites[J]. Composites Science and Technology, 2018, 162: 101-109.
[15] 谷元慧, 周红涛, 张典堂, 等. 碳纤维增强编织复合材料圆管的扭转力学性能及其损伤机制[J]. 纺织学报, 2022, 43(3): 95-102.
GU Yuanhui, ZHOU Hongtao, ZHANG Diantang, et al. Torsional mechanical properties and damage mechanism of carbon fiber reinforced braided composite tube[J]. Journal of Textile Research, 2022, 43(3): 95-102.
[16] 张燕南, 周伟, 商雅静, 等. 三维编织复合材料拉伸微变形的测量与损伤破坏声发射监测[J]. 纺织学报, 2019, 40(8): 55-63.
ZHANG Yannan, ZHOU Wei, SHANG Yajing, et al. Micro-deformation measurement and acoustic emission monitoring of three dimensional braided composites under tensile loading[J]. Journal of Textile Research, 2019, 40(8): 55-63.
[17] 李典森, 刘子仙, 卢子兴, 等. 三维五向炭纤维/酚醛编织复合材料的压缩性能及破坏机制[J]. 复合材料学报, 2008, 25(1): 133-139.
LI Diansen, LIU Zixian, LU Zixing, et al. Compression properties and failure mechanism of three-dimensional five directional carbon fiber/phenolic woven compo-site[J]. Acta Materiae Compositae Sinica, 2008, 25(1): 133-139.
[18] 尹寒飞. 碳/芳混杂编织复合材料力学变形测量与损伤检测研究[D]. 保定: 河北大学, 2020: 33-55.
YIN Hanfei. Mechanical deformation measurement and damage detection investigations of carbon/aramid hybrid woven composites[D]. Baoding: Hebei University, 2020: 33-55.
[19] 龙祥, 卢雪峰, 周红涛, 等. 纬密变化对碳纤维/芳纶混编增强酚醛树脂材料弯曲性能的影响[J]. 化工新型材料, 2016, 44(11): 37-40.
LONG Xiang, LU Xuefeng, ZHOU Hongtao, et al. Influence of weft density on the flexural property of carbon/aramid reinforced phenolic resin composite[J]. New Chemical Materials, 2016, 44(11): 37-40.
[1] 刘东炎, 郑成燕, 王晓旭, 钱坤, 张典堂. 超高分子量聚乙烯织物/聚脲柔性复合材料的抗破片侵彻机制[J]. 纺织学报, 2023, 44(03): 79-87.
[2] 陈小明, 李皎, 张一帆, 谢军波, 姚天磊, 陈利. 基于上位机的层间角联锁织物用织机开口控制系统设计[J]. 纺织学报, 2022, 43(04): 174-179.
[3] 袁琼, 邱海鹏, 谢巍杰, 王岭, 王晓猛, 张典堂, 钱坤. 三维六向编织SiCf/SiC复合材料的力学行为及其损伤机制[J]. 纺织学报, 2021, 42(12): 81-89.
[4] 杨甜甜, 王岭, 邱海鹏, 王晓猛, 张典堂, 钱坤. 三维机织角联锁SiCf/SiC复合材料弯曲性能及损伤机制[J]. 纺织学报, 2020, 41(12): 73-80.
[5] 万喜莉 孙颖 陈利 李嘉禄. 2.5D角联锁织物厚向压缩特性的实验研究[J]. 纺织学报, 2015, 36(02): 49-54.
[6] 白燕. 正则多重纬角联锁机织物的快速设计[J]. 纺织学报, 2013, 34(2): 61-64.
[7] 李姗姗;陈利;焦亚男;孙绯;. 2.5维机织物接结经纱缩率的影响因素[J]. 纺织学报, 2010, 31(5): 55-58.
[8] 王旭;晏雄. 聚乙烯自增强复合材料损伤行为的声发射特征[J]. 纺织学报, 2010, 31(3): 27-31.
[9] 唐予远;李虹;章伟;丁辛. 三维机织多孔复合材料的横向冲击性能[J]. 纺织学报, 2010, 31(2): 44-49.
[10] 聂建斌;卢士艳. 角联锁织物的组织设计[J]. 纺织学报, 2006, 27(3): 90-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!