纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 188-194.doi: 10.13475/j.fzxb.20230205501

• 服装工程 • 上一篇    下一篇

电加热服加热区域分布对人体热舒适感的影响

柯莹1(), 林磊2, 郑晴2, 王宏付1   

  1. 1.江南大学 设计学院, 江苏 无锡 214122
    2.江南大学 纺织科学与工程学院, 江苏 无锡 214122
  • 收稿日期:2023-02-23 修回日期:2023-12-25 出版日期:2024-04-15 发布日期:2024-05-13
  • 作者简介:柯莹(1987—),女,副教授,博士。主要研究方向为功能服装设计与评价。E-mail:keying@jiangnan.edu.cn
  • 基金资助:
    江苏省第六期“333人才”培养支持资助优秀青年人才项目(苏人才办〔2022〕21号)

Influence of heating area distribution of electrical heating clothing on human thermal comfort

KE Ying1(), LIN Lei2, ZHENG Qing2, WANG Hongfu1   

  1. 1. School of Design, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2023-02-23 Revised:2023-12-25 Published:2024-04-15 Online:2024-05-13

摘要:

为探究加热区域分布对电加热服热舒适性的影响规律,设计了3种加热区域,在环境温度为(5 ± 0.5) ℃,相对湿度为(50 ± 5)%的条件下进行真人着装实验,记录受试者客观生理数据和主观感受并对其进行分析。实验结果表明:在加热面积一定的情况下,将加热片集中分布在上半身躯干位置能显著提高平均躯干温度,对平均皮肤温度的提高作用不大;相比之下,躯干加上腿部的加热区域组合能有效提高平均皮肤温度0.8 ℃以上,躯干、大腿和大臂的加热区域组合能将平均皮肤温度提高0.5 ℃;另外,将加热片分布到四肢相较于集中加热躯干对改善热感觉和热舒适的效果更好。建议当加热面积一定时,将加热片分布到躯干以及腿部位置,可使电加热服具有较好的功能性和舒适性。

关键词: 电加热服, 加热区域, 皮肤温度, 热感觉, 热舒适性

Abstract:

Objective Applying thermal stimulation to different parts of the human body can affect human thermal comfort. This research aims to further investigate and compare the performance of heating area distribution of electric heating clothing at low temperature (5 ℃). The influence of the heating area distribution on the thermal comfort of electric heating clothing is analyzed, aiming to assist the design of electric heating clothing.

Method Seven healthy male university students were recruited for this trial, which was conducted in an artificial climate chamber (ESPEC Corp, Japan). Three heating areas were designed, i.e., the torso (HA1), the torso and legs (HA2), and the torso and thigh and upper arm heating (HA3). Carbon nanotube heating pads were selected for the trial. The human dressing experiments were carried out under the conditions of the ambient temperature of (5 ± 0.5) ℃ and relative humidity of (50 ± 5)%. The subjects' objective physiological data and subjective feelings were recorded and analyzed during the trial.

Results The experimental results showed that HA1 significantly increased the mean torso temperature, while had little effect on the mean skin temperature. In contrast, HA2 effectively increased the mean skin temperature by more than 0.8 ℃, and HA3 increased the mean skin temperature by more than 0.5 ℃. The skin temperature of the chest and waist of HA1 was significantly higher than that of HA2 and HA3. On the other hand, HA2 and HA3 significantly affected leg temperatures. Significantly higher thermal sensation vote(TSV) was found in HA2 as compared to HA1 at 10 min and 30-60 min (P < 0.05). Only at 10 min, the TSV of HA3 and the thermal comfort vote(TCV) of HA2 were significantly higher than that of HA1 (P < 0.05). HA2 had the highest thermal acceptability. More importantly, HA2 had the lowest percentage of people who wanted to be warm. There was a negative linear correlation between the mean torso temperature and overall thermal sensation and a positive linear correlation between the mean skin temperature and overall thermal sensation for HA1. There is a negative linear correlation between the mean torso temperature and overall thermal comfort for the three heated area distributions. The mean skin temperature of HA1 positively correlated with overall thermal comfort. Overall thermal sensation and thermal comfort decreased with increasing mean torso temperature and increased with increasing mean skin temperature.

Conclusion Under a specific heating area, centralized torso heating can significantly increase the mean torso temperature, but it fails to increase the mean skin temperature effectively. The excessively high mean torso temperature can also reduce the thermal comfort of the body. The mean skin temperature is linearly correlated with the overall thermal sensation and comfort within a certain range. Distributing heating pads to the legs and arms can not only effectively increase the mean skin temperature but also improve the thermal comfort of the human body. The heating combination of the torso and legs is more beneficial to improve the thermal comfort of the whole body than the heating combination of the torso, thigh and upper arm. It is suggested to distribute heating pads to the torso and leg positions with the same heating area, which can give the electrical heating clothing better retention of warmth.

Key words: electrical heating clothing, heating area, skin temperature, thermal sensation, thermal comfort

中图分类号: 

  • TS941.7

图1

加热区域分布方式"

图2

平均皮肤温度"

图3

平均躯干温度"

图4

胸腰皮肤温度"

图5

腿部皮肤温度"

图6

全身主观感受"

图7

全身热接受与热偏好"

图8

皮肤温度与全身热感觉的相关性"

图9

皮肤温度与全身热舒适感的相关性"

[1] WANG F, GAO C, KUKLANE K, et al. A review of technology of personal heating garments[J]. International Journal of Occupational Safety and Ergonomics, 2010, 16(3): 387-404.
pmid: 20828494
[2] XU P, WANG F, ZHAO M. Electrically heated clothing (EHC) for protection against cold stress[C]// WANG F, GAO C. Protective Clothing. Cambridge: Woodhead Publishing, 2014: 281-295.
[3] CHEONG K, YU W, SEKHAR S, et al. Local thermal sensation and comfort study in a field environment chamber served by displacement ventilation system in the tropics[J]. Building and Environment, 2007, 42(2): 525-533.
[4] 崔志英, 王绿英, 杨诗慧. 加热区域设计对电加热服热舒适性的影响[J]. 棉纺织技术, 2021, 49(5): 33-36.
CUI Zhiying, WANG Lüying, YANG Shihui. Influence of heating zone design on electrically heated garment thermal comfort[J]. Cotton Textile Technology, 2021, 49(5): 33-36.
[5] 吴黛唯, 李红彦, 戴艳阳, 等. 加热装置在防寒服中的位置及其热效用[J]. 纺织学报, 2020, 41(6): 118-124.
WU Daiwei, LI Hongyan, DAI Yanyang, et al. Thermal function effectiveness and location of heating device in cold protective clothing[J]. Journal of Textile Research, 2020, 41(6): 118-124.
[6] WANG F, GAO C, HOLMÉR I. Effects of air velocity and clothing combination on heating efficiency of an electrically heated vest (EHV): a pilot study[J]. Journal of Occupational and Environmental Hygiene, 2010, 7(9): 501-505.
doi: 10.1080/15459624.2010.486696 pmid: 20552501
[7] HUANG Q, XING G, YANG F, et al. Modelling and experimental study on electrically heating garment to enhance personal thermal comfort[C]// IOP Conference Series: Earth and Environmental Science. Bristol: IOP Publishing Ltd, 2021. DOI:10.1088/1755-1315/696/1/012046.
[8] 宋英莉, 郭宇微, 唐志娟, 等. 基于人体局部热需求差异的电发热服发热片放置位置研究[J]. 轻纺工业与技术, 2018, 47(10): 13-15.
SONG Yingli, GUO Yuwei, TANG Zhijuan, et al. Study on the placement position of heating plate of electric heating clothing based on the difference of local heat demand of human body[J]. Light and Textile Industry and Technology, 2018, 47(10): 13-15.
[9] 刘咏梅, 肖平, 范雅雯. 电发热袜发热区域对足部表面温度的影响[J]. 纺织学报, 2020, 41(2): 130-135.
LIU Yongmei, XIAO Ping, FAN Yawen. Effect of heating area of electric heating socks on foot tempera-ture[J]. Journal of Textile Research, 2020, 41(2):130-135.
[10] DENG Q, WANG R, LI Y, et al. Human thermal sensation and comfort in a non-uniform environment with personalized heating[J]. Science of the Total Environment, 2017, 578: 242-248.
[11] YANG H, CAO B, ZHU Y. Study on the effects of chair heating in cold indoor environments from the perspective of local thermal sensation[J]. Energy and Buildings, 2018, 180: 16-28.
[12] HE Y, WANG X, LI N, et al. Heating chair assisted by leg-warmer: a potential way to achieve better thermal comfort and greater energy conservation in winter[J]. Energy and Buildings, 2018, 158: 1106-1116.
[13] DU C, LIU H, LI C, et al. Demand and efficiency evaluations of local convective heating to human feet and low body parts in cold environments[J]. Building and Environment, 2020. DOI:10.1016/j.buildenv.2020.106662.
[14] DENG Y, CAO B, YANG H, et al. Effects of local body heating on thermal comfort for audiences in open-air venues in 2022 Winter Olympics[J]. Building and Environment, 2019. DOI:10.1016/j.buildenv.2019.106363.
[15] HE Y, LI N, LU J, et al. Meeting thermal needs of occupants in shared space with an adjustable thermostat and local heating in winter: an experimental study[J]. Energy and Buildings, 2021. DOI:10.1016/j.enbuild.2021.110776.
[16] WANG H, XU M, BIAN C. Experimental comparison of local direct heating to improve thermal comfort of workers[J]. Building and Environment, 2020. DOI:10.1016/j.buildenv.2020.106884.
[17] LI B, YAO R, WANG Q, et al. An introduction to the Chinese evaluation standard for the indoor thermal environment[J]. Energy and Buildings, 2014, 82: 27-36.
[18] PARK S, HELLWIG R T, GRÜN G, et al. Local and overall thermal comfort in an aircraft cabin and their interrelations[J]. Building and Environment, 2011, 46(5): 1056-1064.
[19] LIU W, LIAN Z, DENG Q, et al. Evaluation of calculation methods of mean skin temperature for use in thermal comfort study[J]. Building and Environment, 2011, 46(2): 478-488.
[20] GAO C, KUKLANE K, WANG F, et al. Personal cooling with phase change materials to improve thermal comfort from a heat wave perspective[J]. Indoor Air, 2012, 22(6): 523-530.
doi: 10.1111/j.1600-0668.2012.00778.x pmid: 22385303
[1] 程子琪, 卢业虎, 许静娴. 电热织物系统热传递模拟及其参数设计[J]. 纺织学报, 2024, 45(02): 206-213.
[2] 杜吉辉, 苏云, 刘广菊, 田苗, 李俊. 智能防寒手套温控系统设计及热舒适性研究[J]. 纺织学报, 2023, 44(04): 172-178.
[3] 张昭华, 陈雪, 倪军, 杨玉桐, 邹一凡. 冷环境下局部电加热对人体热反应的影响[J]. 纺织学报, 2023, 44(03): 187-194.
[4] 陈莹, 宋泽涛, 郑晓慧, 姜延, 常素芹. 蒸发型降温服的降温性能研究[J]. 纺织学报, 2022, 43(11): 141-147.
[5] 张昭华, 陈之瑞, 李璐瑶, 肖平, 彭浩然, 张钰涵. 人体局部皮肤的气流敏感性及其影响因素[J]. 纺织学报, 2021, 42(12): 125-130.
[6] 柳洋, 夏兆鹏, 王亮, 范杰, 曾强, 刘雍. 医用防护服的发展现状及趋势[J]. 纺织学报, 2021, 42(09): 195-202.
[7] 柯莹, 张海棠, 朱晓涵, 王宏付, 王敏. 电加热高空清洁作业服研制与性能评价[J]. 纺织学报, 2021, 42(08): 149-155.
[8] 牛梦雨, 潘姝雯, 戴宏钦, 吕凯敏. 医用防护服的热湿舒适性与人体疲劳度的关系[J]. 纺织学报, 2021, 42(07): 144-150.
[9] 赵敬德, 丁义冉, 张春红. 室外高温环境下通风服装的传热模型与实验研究[J]. 纺织学报, 2021, 42(06): 153-159.
[10] 黄倩倩, 李俊. 环境温度突变时人体热感觉变化机制研究进展[J]. 纺织学报, 2020, 41(04): 188-194.
[11] 郑晴, 王宏付, 柯莹, 李爽. 相变降温矿工服的设计与评价[J]. 纺织学报, 2020, 41(03): 124-129.
[12] 赵蒙蒙, 柯莹, 王发明, 李俊. 通风服热舒适性研究现状与展望[J]. 纺织学报, 2019, 40(03): 183-188.
[13] 张文欢 钱晓明 师云龙 范金土 牛丽. 服装局部热阻与总热阻的动静态关系及其模型[J]. 纺织学报, 2018, 39(07): 111-115.
[14] 陈扬 杨允出 张艺强 范艳娟 金艳苹. 电加热服装中加热片与织物组合体的稳态热传递模拟[J]. 纺织学报, 2018, 39(05): 49-55.
[15] 苗苗 鲁虹 程梦琪. 运动前后人体体表温度变化与主观热感觉评定[J]. 纺织学报, 2018, 39(04): 116-122.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!