纺织学报 ›› 2024, Vol. 45 ›› Issue (11): 114-120.doi: 10.13475/j.fzxb.20230206501

• 纺织工程 • 上一篇    下一篇

织边结构弹性传感机织带的制备及其传感性能影响因素

史雅楠1, 马颜雪1(), 樊平2, 薛文良1, 李毓陵1   

  1. 1.东华大学 纺织学院, 上海 201620
    2.浙江澳亚织造股份有限公司, 浙江 金华 321000
  • 收稿日期:2023-02-28 修回日期:2024-06-21 出版日期:2024-11-15 发布日期:2024-12-30
  • 通讯作者: 马颜雪(1988—),女,副教授,博士。主要研究方向为功能纺织设计。E-mail:yxma@dhu.edu.cn
  • 作者简介:史雅楠(1999—),女,硕士生。主要研究方向为功能纺织设计。
  • 基金资助:
    中央高校基本科研业务费项目(2232020E-10)

Preparation of weaving edge structure flexible sensor woven webbing and analysis of influencing factors on sensing performance

SHI Ya'nan1, MA Yanxue1(), FAN Ping2, XUE Wenliang1, LI Yuling1   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Zhejiang Aoya Weaving Co., Ltd., Jinhua, Zhejiang 321000, China
  • Received:2023-02-28 Revised:2024-06-21 Published:2024-11-15 Online:2024-12-30

摘要:

为探究弹性传感机织带经向及其织边发生应变时织带电阻信号的变化规律,利用锁边工艺,将镀银锦纶导电纱线作为锁边纱,二烯类弹性纤维作为弹力经纱织造弹性机织带。通过改变弹力经纱线密度、根数和上机纬密,织造了27种不同规格的弹性传感机织带,分析各因素对织带传感性能的影响,并选用传感性能最好的一款织带制作成肩颈矫形带,监测人体姿势性驼背角度变化,以验证所制备弹性织带的传感效果。试验结果显示,基于锁边工艺制备的弹性传感织带的传感特征曲线呈增长趋势,线性特征较理想,灵敏度高,性能稳定,上机纬密和弹力经纱线密度这2个因素对于传感性能有更显著的影响。同时人体姿态变化模拟试验结果也表明,织带应变的电阻值变化能够反映人体胸椎与颈椎间的偏离角度,发挥稳定的传感作用。

关键词: 传感纺织品, 锁边结构, 机织工艺, 弹力织物, 传感性能, 灵敏度

Abstract:

Objective Current research mainly focuses on monitoring human physiological signals or fingers movements that can cause a certain strain under low stress. However, shoulder and neck movement require high stress to cause small strain, which is difficult to be monitored using knitted sensing fabrics. Therefore, the study aimed to develop elastic sensing woven webbing, to investigate its design and fabrication method, and to explore the sensing properties and the application feasibility through corresponding human wearing test.

Method The conductive yarns were used as selvage yarns in elastic web weaving process. Effects of on-machine weft density, elastic yarn fineness and the number of conductive yarns on sensing properties were explored. Three levels of each factor created 27 treatment combinations, leading to 27 elastic woven webbing samples with different tensile properties. The resistances in a certain length of the webbing samples were measured when the elastic webbings were stretched to the same strain. The resistance-strain curve was developed, presenting the sensing curve. Linearity and reproducibility of the sensing property were analyzed after repeated tests. Also, the corresponding equivalent resistance calculation formula was obtained so that to examine the selvedge structure and the sensing mechanism caused by conductive yarns. Finally, the elastic webbing with the best performance was applied in a wearing experiment of human postural hunchback angle monitoring to verify the stability and application possibility of the sensing webbing.

Results The sensing curves of elastic sensing woven webbing demonstrated an increasing trend with ideal linear feature, with high corresponding sensitivity and stable repeatability. The special selvage structure of the elastic woven webbing was found to play an important role in sensing properties. Increasing the on-machine weft density, fineness of elastic yarn, or the number of elastic yarns in the locked selvage enhanced the sensitivity of the sensing elastic webbing. In addition, the human wearing test further verified that the sensing performance of this elastic sensing woven webbing was stable and applicable to monitor human shoulder and neck motion.

Conclusion The study was undertaken to analyze the sensing property and sensing mechanism of the elastic webbing with conductive selvage yarns. The weft density, the fineness and the number of elastic yarns have significant effects on the sensing performance. The corresponding equivalent resistance calculation formula obtained is helpful to analyze the corresponding varying trend of each equivalent resistance unit under the strain. Findings in the study provide an ideal way to monitor human movements with high stress and small strain.

Key words: sensing textile, selvedge structure, weaving process, elastic fabric, sensing property, sensitivity

中图分类号: 

  • TS101.8

图1

上机穿纱图"

表1

织造变量的三因素三水平表"

水平 A B C
上机纬密/
(根·cm-1)
弹力经纱线密度/tex 织边弹力经纱根数
1 14 325 6
2 12 250 5
3 10 200 4

图2

织边结构实物和模拟图"

图3

导电纱线在织边结构中对应的等效电阻模型"

表2

3种织造变量对电阻值的影响"

影响因素 各因素水平 电阻值/Ω
上机纬密/(根·cm-1) 14 100.47
12 111.93
10 121.47
弹力经纱线密度/tex 325 98.72
250 111.87
200 123.28
织边弹力经纱根数 6 102.71
5 111.77
4 119.39

图4

弹性传感机织带在0%~30%应变内的传感特征曲线"

表3

3种织造变量对织带线性度的影响"

影响因素 各因素水平 线性度
上机纬密/(根·cm-1) 14 0.043
12 0.035
10 0.033
弹力经纱线密度/tex 325 0.038
250 0.041
200 0.033
织边弹力纱根数 6 0.042
5 0.035
4 0.035

图5

应变由0%~30%时电阻变化率在10次反复拉伸下的CV值"

图6

不同规格织带重复测试时30%应变的电阻值"

图7

弹性传感机织带不同位置测试示意图"

图8

不同方法测试10次的结果"

[1] 马丕波, 刘青, 牛丽, 等. 针织传感器在运动健康服装领域的研究进展[J]. 服装学报, 2021, 6(2):112-118.
MA Pibo, LIU Qing, NIU Li, et al. Research progress of knitting sensors in the clothing field of sports and health[J]. Journal of Clothing Research, 2021, 6(2):112-118.
[2] 吴雨曦, 王朝晖. 柔性导电纤维在智能可穿戴装备中的研究进展[J]. 纺织导报, 2018(9): 61-66.
WU Yuxi, WANG Zhaohui. Application progress of flexible conductive fibers in wearable equipment[J]. China Textile Leader, 2018(9): 61-66.
[3] ZHANG X, XUE M, YANG X, et al. Preparation and tribological properties of Ti3C2 (OH)2 nanosheets as additives in base oil [J]. RSC Advances, 2014, 5(4):56-63.
[4] 赵博宇, 李露红, 丛洪莲. 棉/Ti3C2导电纱制备及其电容式压力传感器的性能[J]. 纺织学报, 2022, 43(7): 47-54.
ZHAO Boyu, LI Luhong, CONG Honglian. Preparation of cotton /Ti3C2 conductive yarn and performance of pressure capacitance sensor[J]. Journal of Textile Research, 2022, 43(7): 47-54.
[5] SON Yewon, LEE Seulah, CHOI Yuna, et al. Design framework for a seamless smart glove using a digital knitting system[J]. Fashion and Textiles, 2021. DOI:10.1186/s40691-020-00237-2.
[6] 王金凤. 导电针织柔性传感器的电-力学性能及内衣压力测试研究[D]. 上海: 东华大学, 2013:26-28.
WANG Jinfeng. Research of electro-mechanical properties of conductive knitted flexible sensors and measurement of underwear pressure[D]. Shanghai: Donghua University, 2013:26-28.
[7] 张晓峰, 李国豪, 胡吉永, 等. 用于人体上肢运动姿态监测的聚吡咯导电织物的机电性能评价[J]. 中国生物医学工程学报, 2015, 34(6): 670-676.
ZHANG Xiaofeng, LI Guohao, HU Jiyong, et al. Mechanic-electrical property characterization of PPy-coated conductive woven fabric for human upper limb motion monitoring[J]. Chinese Journal of Biomedical Engineering, 2015, 34(6): 670-676.
[8] SHYR Tienwei, SHIE Jingwen, JIANG Changhan, et al. A textile-based wearable sensing device designed for monitoring the flexion angle of elbow and knee movements[J]. Sensors, 2014. DOI:10.3390/s140304050.
[9] 吴磊, 李凯林, 李龙. 柔性传感针织物用不锈钢纱线与镀银纱线的性能[J]. 上海纺织科技, 2021, 49(3): 43-46.
WU Lei, LI Kailin, LI Long. The properties of stainless steel yarn and silver-plated yarn for knitted fabric-based sensors[J]. Shanghai Textile Science and Technology, 2021, 49(3): 43-46.
[10] LIANG An, STEWART Rebecca, BRYAN-KINNS Nick. Analysis of sensitivity, linearity, hysteresis, responsiveness, and fatigue of textile knit stretch sensors[J]. Sensors, 2019. DOI:10.3390/s19163618.
[11] POPPER Peter. The theoretical behavior of a knitted fabric subjected to biaxial stresses[J]. Textile Research Journal, 1966, 36(2): 148-157.
[12] HEPWORTH Barbara. The biaxial load-extension behavior of a mode of plain weft-knitting: part Ⅰ[J]. Journal of The Textile Institute, 1978, 69 (4): 101-107.
[13] 叶启彬, 匡正达, 杜明奎, 等. 脊柱后凸畸形外科治疗的进展与问题[J]. 中国矫形外科杂志, 2011, 19(1): 7-10.
YE Qibin, KUANG Zhengda, DU Mingkui, et al. Progress and problems in surgical treatment of spinal kyphosis deformity[J]. Orthopedic Journal of China, 2011, 19(1): 7-10.
[14] 张翼飞, 孙毅, 潘海乐. 脊柱后凸畸形的研究进展[J]. 医学综述, 2016, 22(8): 1519-1522.
ZHANG Yifei, SUN Yi, PAN Haile. The research development of kyphosis[J]. Medical Recapitulate, 2016, 22(8): 1519-1522.
[1] 张蕊, 应迪, 陈冰冰, 田欣, 郑莹莹, 王建, 邹专勇. 碳纳米管修饰三维纤维网非织造布传感器的制备及其性能[J]. 纺织学报, 2024, 45(11): 46-54.
[2] 李露红, 罗天, 丛洪莲. 针织一体成形电容传感器设计及其性能[J]. 纺织学报, 2024, 45(10): 80-88.
[3] 刘懿德, 李凯, 姚久勇, 成芳芳, 夏延致. 纤维素水凝胶纤维的制备及其阻燃传感性能[J]. 纺织学报, 2024, 45(04): 1-7.
[4] 闫鹏翔, 陈富星, 刘红, 田明伟. 柔性力感知电子织物的制备及其人体运动监测系统构建[J]. 纺织学报, 2024, 45(02): 59-66.
[5] 李露红, 赵博宇, 丛洪莲. 复合结构经编针织电容式传感器设计及其性能[J]. 纺织学报, 2023, 44(08): 88-95.
[6] 李港华, 王航, 史宝会, 曲丽君, 田明伟. 柔性电子织物的构筑及其压力传感性能[J]. 纺织学报, 2023, 44(02): 96-102.
[7] 闫涛, 潘志娟. 轻薄型取向碳纳米纤维膜的应变传感性能[J]. 纺织学报, 2021, 42(07): 62-68.
[8] 王晓菲, 万爱兰, 沈新燕. 基于聚多巴胺修饰的聚吡咯导电织物制备与应变传感性能[J]. 纺织学报, 2021, 42(06): 114-119.
[9] 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(05): 168-177.
[10] 张祝辉, 张典堂, 钱坤, 徐阳, 陆健. 广角机织物的织造工艺及其偏轴拉伸力学性能[J]. 纺织学报, 2020, 41(08): 27-31.
[11] 吴颖欣, 胡铖烨, 周筱雅, 韩潇, 洪剑寒, GIL Ignacio. 柔性可穿戴氨纶/聚苯胺/聚氨酯复合材料的应变传感性能[J]. 纺织学报, 2020, 41(04): 21-25.
[12] 贾高鹏, 宋小红, 李莹, 刘晓丹, 潘雪茹. 铜镍金属涂层机织物拉伸过程中电流的响应[J]. 纺织学报, 2019, 40(10): 68-72.
[13] 李思明, 吴官正, 胡雨洁, 方镁淇, 贺录祥, 贺燕, 肖学良. 压力分布监测袜的制备及其传感性能[J]. 纺织学报, 2019, 40(07): 138-144.
[14] 孙婉, 缪旭红, 王晓雷, 蒋高明. 基于经编间隔织物的压力电容传感器特性[J]. 纺织学报, 2019, 40(02): 94-99.
[15] 郭惠昕, 张干清. 刺绣机针杆机构运动精度的灵敏度分析[J]. 纺织学报, 2019, 40(01): 142-146.
Viewed
Full text
10
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 4 0 0 6

  From Others local
  Times 6 4
  Rate 60% 40%

Abstract
55
Just accepted Online first Issue
0 0 55
  From Others local
  Times 41 14
  Rate 75% 25%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!