纺织学报 ›› 2024, Vol. 45 ›› Issue (01): 120-127.doi: 10.13475/j.fzxb.20230300101

• 染整工程 • 上一篇    下一篇

5-(二甲氨基)-2-甲基-5-氧戊酸甲酯在超临界二氧化碳流体染色中的应用

葛怀富1,2, 吴伟1,2(), 王健3, 徐红1,2,4, 毛志平1,2,4,5   

  1. 1.东华大学 生态纺织教育部重点实验室, 上海 201620
    2.东华大学 化学与化工学院, 上海 201620
    3.青岛即发集团股份有限公司, 山东 青岛 266000
    4.东华大学 纺织科技创新中心, 上海 201620
    5.东华大学 国家染整工程技术研究中心, 上海 201620
  • 收稿日期:2023-03-01 修回日期:2023-05-06 出版日期:2024-01-15 发布日期:2024-03-14
  • 通讯作者: 吴伟(1991—),男,博士。主要研究方向为计算化学方法在染整基础理论中的应用。E-mail:wuwei@dhu.edu.cn
  • 作者简介:葛怀富(1997—),男,硕士。主要研究方向为超临界二氧化碳流体染色。
  • 基金资助:
    国家自然科学基金项目(22208049);山东省自然科学基金重大基础研究项目(ZR2020ZD22);山东省重大科技创新工程项目(2019JZZY010406)

Application of methyl 5-(dimethylamino)-2-methyl-5-oxopentanoate in supercritical carbon dioxide fluid dyeing with disperse dyes

GE Huaifu1,2, WU Wei1,2(), WANG Jian3, XU Hong1,2,4, MAO Zhiping1,2,4,5   

  1. 1. Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
    3. Jifa Group Co., Ltd.,Qingdao, Shandong 266000, China
    4. Innovation Center for Textile Science and Technology, Donghua University, Shanghai 201620, China
    5. National Engineering Research Center for Dyeing and Finishing of Textiles, Donghua University, Shanghai 201620, China
  • Received:2023-03-01 Revised:2023-05-06 Published:2024-01-15 Online:2024-03-14

摘要:

为提高部分分散染料在超临界二氧化碳流体(ScCO2)中上染率,补全ScCO2分散染料染色色谱,以5-(二甲氨基)-2-甲基-5-氧戊酸甲酯作为分散染料ScCO2染色助溶剂,通过实验探究了染料与助溶剂质量比、染色温度、染色压力对分散染料上染率的影响,并对染色后涤纶纱线的力学性能、耐摩擦色牢度、耐日晒色牢度以及耐皂洗色牢度进行表征。结果表明:纱线得色深度明显提高,且未对纱线色相、饱和度产生明显影响;分散黄163、分散蓝60染料滤饼上染率分别为21.61%、34.25%;加入助溶剂后,分散黄163、分散蓝60的ScCO2染色上染率分别可达57.62%、 70.97%;染色纱线得色深度显著提高,染色后纱线的K/S值分别由4.5、5.9提升至12.0、12.2;最佳染色工艺为:染料与助溶剂质量比1∶20,染色温度130 ℃,染色压力27 MPa;加入助溶剂后染色纱线的力学性能、色牢度符合生产需求。

关键词: 分散染料, 超临界二氧化碳流体, 助溶剂, 上染率, 涤纶纱线

Abstract:

Objective Supercritical carbon dioxide fluid (ScCO2) dyeing of disperse dyes with low energy consumption and no effluent discharge in the dyeing process is an advanced industrial technology in line with sustainable development. However, some problems associated with the disperse dyes in this process, such as low dye uptake and incomplete dye chromatography caused by low solubility, greatly limit their further development. In view of these problems, this paper proposed to add appropriate cosolvent to the ScCO2 to improve its solubility, so as to reduce the impact of these problems on the dyeing process.

Method Based on the interaction forces between disperse dye molecules and cosolvent molecules, a green cosolvent (methyl 5-(dimethylamino)-2-methyl-5-oxopentanoate) with high solubility for disperse dyes, high boiling point and non-volatile and non-toxic was selected as a dyeing auxiliary. Disperse yellow 163 and Disperse Blue 60 were selected as experimental dyes. The dyeing rates and K/S values of disperse dye filter cakes and disperse dye filter cakes with cosolvent blends were tested under different process conditions to evaluate their dyeing effects. The mechanical properties and color fastness of the dyed yarns were characterized to assess the effect of the cosolvent addition on the yarn properties.

Results The influence of cosolvent on the fabric was studied through the reflectance curve of the dyed fabric. The results showed that the selected cosolvent has a significant influence on the brightness of the fabric, but it will not change the color and saturation of the fabric. With the addition of cosolvent, the K/S value of fabric dyed by Disperse Yellow 163 increased from 4.5 to 12.0, and that of fabric dyed by Disperse Blue 60 increased from 5.9 to 12.2, indicating that this cosolvent could be used in supercritical carbon dioxide fluid dyeing with disperse dyes. By changing the mass ratio of disperse dyes to liquid cosolvent, dyeing temperature and pressure, the influence of process conditions on the dye uptake of disperse dyes was investigated. The dye uptake of disperse dyes increased significantly after adding the cosolvent. When the mass ratio of dye and cosolvent was 1∶20, the dyeing rate of Disperse Yellow 163 and Disperse Blue 60 reached 57.62% and 70.97%, respectively. With the increase of temperature, the dye uptake increased first and then decreased after adding cosolvent, reaching the maximum at 130 ℃. With the increase of pressure, the dye uptake of disperse dyes increased slightly. The dye uptake did not change significantly with the dyeing pressure above 27 MPa, and the optimum dyeing pressure was 27 MPa. The mechanical properties and color fastness of four different yarns were characterized. The breaking strength and the elongation at break did not change significantly, and the breaking strength of yarns is all about 250 cN and elongation at break is all about 20%. Color fastness to rubbing, color fastness to sunlight and color fastness to soaping of the yarn were all above 4 levels. Properties of yarns dyed with cosolvent met the production requirements.

Conclusion In this study, methyl-5-(dimethylamino)-2-methyl-5-oxopentanoate was used as a dyeing cosolvent to effectively improve the dyeing rate of Disperse Yellow 163 and Disperse Blue 60 in the supercritical CO2 fluid dyeing process from a practical production problem. Meanwhile, the addition of the cosolvent only affected the brightness of the dyed yarn, and had no significant effect on the color phase and saturation. A suitable dyeing process was determined by the subsequent experiment conditions, i.e., the mass ratio of dye to co-solvent was 1:20, the dyeing temperature was 130 ℃, and the dyeing pressure was 27 MPa. After the addition of cosolvent, the resulting fabric with increased color depth, no significant loss of mechanical properties, and excellent color fastness performance met the requirements of national standards. In summary, the addition of cosolvent caused no significant effect on yarn properties while improving the dyeing rate of disperse dyes with good application prospects in the field of ScCO2dyeing.

Key words: disperse dye, supercritical carbon dioxide fluid, cosolvent, dye-uptake, polyester yarn

中图分类号: 

  • TS193.1

图1

5-(二甲氨基)-2-甲基-5-氧戊酸甲酯结构式"

图2

不同染色体系光谱反射率曲线"

图3

分散染料标准吸光度曲线图"

图4

不同助溶剂用量下分散染料上染率"

表1

不同助溶剂用量的染色体系染色后纱线的K/S值"

助溶剂
用量/g
K/S
分散黄163 分散蓝60
0 4.5 5.9
5 6.1 9.0
10 9.8 11.0
15 11.1 12.1
20 12.0 12.2

图5

温度对不同染色体系上染率影响"

表2

不同温度下4种染色体系染色后纱线的K/S值"

温度/
K/S
Y163 Y163+助溶剂 B60 B60+助溶剂
90 3.8 8.3 4.7 7.3
100 4.1 9.6 5.2 8.8
110 4.2 10.7 5.7 10.1
120 4.4 11.1 5.8 11.6
130 4.5 12.0 5.9 12.2
140 4.6 12.0 6.0 12.2

图6

压力对不同染色体系上染率影响"

表3

不同压力下4种分散染料体系染色后纱线的K/S值"

压力/
MPa
K/S
Y163 Y163+助溶剂 B60 B60+助溶剂
22 3.8 11.4 5.4 11.0
24 4.2 11.5 5.7 11.4
26 4.5 11.8 5.8 12.0
27 4.5 12.0 5.9 12.2

表4

纱线的力学性能"

染料 断裂强力/
cN
断裂强力
CV值/%
断裂伸长
率/%
断裂伸长率
CV值/%
Y163 250.23 1.55 20.81 3.26
Y163+助溶剂 248.36 2.24 19.42 3.36
B60 252.04 2.13 21.08 3.61
B60+助溶剂 256.18 1.76 21.13 3.28

表5

Color fastness of yarn dyed by different dyeing systems 级"

染料 耐日晒色
牢度
耐摩擦色牢度 耐皂洗色牢度
原样变色 不同材质贴衬沾色
湿摩 干摩
漂白棉 涤纶 聚丙烯腈 聚酰胺
Y163 ≥4 5 5 4~5 4~5 4~5 4~5 4~5 5 4~5
Y163+助溶剂 ≥4 4~5 4~5 4~5 4~5 4~5 4~5 4~5 5 4~5
B60 ≥4 5 5 4~5 4~5 4~5 4~5 4~5 5 4~5
B60+助溶剂 ≥4 4~5 4~5 4~5 4~5 4~5 4~5 4~5 5 4~5
[1] 陈何卿, 陈旭, 管永银, 等. 涤纶分散染料低共熔溶剂染色[J]. 染整技术, 2022, 44(2): 12-15,48.
CHEN Heqing, CHEN Xu, GUAN Yongyin, et al. Deep eutectic solvent dyeing of polyester with disperse dyes[J]. Textile Dyeing and Finishing Journal, 2022, 44(2): 12-15,48.
[2] 程文青. 硅基非水介质中分散染料对涤纶纤维的上染特性研究[D]. 杭州: 浙江理工大学, 2021:6-7.
CHENG Wenqing. Study on the dyeing characteristics of disperse dyes to polyester fiber in silicon-based non-aqueous medium[D]. Hangzhou: Zhejiang Sci-Tech University, 2021:6-7.
[3] 费良, 殷允杰, 王潮霞. 新型泡沫染整概述[J]. 印染助剂, 2020, 37(8): 1-5.
FEI Liang, YIN Yunjie, WANG Chaoxia. Overview of novel foam dyeing and finishing[J]. Textile Auxiliaries, 2020, 37(8):1-5.
[4] TANG A Y L, LEE C H, WANG Y M, et al. Polyethylene glycol (PEG) non-ionic surfactant-based reverse micellar dyeing of cotton fabric with hot type trichloropyrimidine (TCP)-based reactive dyes[J]. Journal of Natural Fibers, 2023, 20(1): 2131689.
doi: 10.1080/15440478.2022.2131689
[5] 万伟, 刘今强, 李莎, 等. D5反胶束体系的制备及其增溶特性的研究[J]. 应用化工, 2009, 38(10): 14, 17-20,36.
WAN Wei, LIU Jinqiang, LI sha, et al. Study on the preparation and solubilization properties of D5 reverse micelle system[J]. Applied Chemical Industry, 2009, 38(10): 14, 17-20,36.
[6] BANCHERO M. Recent advances in supercritical fluid dyeing[J]. Coloration Technology, 2020, 136(4): 317-335.
doi: 10.1111/cote.v136.4
[7] 裴刘军, 施文华, 张红娟. 非水介质活性染料染色关键技术体系及其产业化研究进展[J]. 纺织学报, 2022, 43(1):122-130.
PEI Liujun, SHI Wenhua, ZHANG Hongjuan, et al. Technology progress and application prospect of non-aqueous medium dyeing systems[J]. Journal of Textile Research, 2022, 43(1):122-130.
[8] 郑环达, 郑来久. 超临界流体染整技术研究进展[J]. 纺织学报, 2015, 36(9):141-148.
ZHENG Huanda, ZHENG Laijiu. Research development of supercritical fluid dyeing and finishing technology[J]. Journal of Textile Research, 2015, 36(9):141-148.
[9] 《“十四五”工业绿色发展规划》发布绿色低碳转型方向[J]. 印染, 2022, 48(1): 84-85.
The "14th Five-Year Plan" for Industrial Green Development released the direction of green and low-carbon transformation[J]. China Dyeing & Finishing, 2022, 48(1): 84-85.
[10] TSAI C C, LIN H M, LEE M J. Solubility of 1,5-Di-aminobromo-4,8-dihydroxyanthraquinone in supercritical carbon dioxide with or without cosolvent[J]. Journal of Chemical & Engineering Data, 2008, 54(5): 1442-1446.
doi: 10.1021/je800646h
[11] TSAI C C, LIN H M, LEE M J. Solubility of C.I. Disperse Violet 1 in supercritical carbon dioxide with or without cosolvent[J]. Journal of Chemical & Engineering Data, 2008, 53(9): 2163-2169.
doi: 10.1021/je8003673
[12] BANCHERO M, FERRI A, MANNA L, et al. Solubility of disperse dyes in supercritical carbon dioxide and ethanol[J]. Fluid Phase Equilibria, 2006, 243(1/2): 107-114.
doi: 10.1016/j.fluid.2006.02.010
[13] CAMPANA F, MASSACCESI B M, SANTORO S, et al. Polarclean/water as a safe and recoverable medium for selective C2-arylation of indoles catalyzed by Pd/C[J]. ACS sustainable chemistry & engineering, 2020, 8(44): 16441-16450.
[14] RANDOVÁ A, BARTOVSKÁ L, MORÁVEK P, et al. A fundamental study of the physicochemical properties of Rhodiasolv Polarclean: a promising alternative to common and hazardous solvents[J]. Journal of Molecular Liquids, 2016, 224: 1163-1171.
doi: 10.1016/j.molliq.2016.10.085
[15] WANG H H, JUNG J T, KIM J F, et al. A novel green solvent alternative for polymeric membrane preparation via nonsolvent-induced phase separation (NIPS)[J]. Journal of Membrane Science, 2019, 574: 44-54.
doi: 10.1016/j.memsci.2018.12.051
[16] 袁理, 王丹书, 谷迁. 基于光谱泛相似测度的色纺纱线与织物间呈色规律[J]. 纺织学报, 2019, 40(2):30-37.
YUAN Li, WANG Danshu, GU Qian. et al. Coloration rules between colored spun yarns and its fabricsbased on spectral pan-similarity measure[J]. Journal of Textile Research, 2019, 40(2):30-37.
[17] ZHENG Jinhua, XV Mingxian, LU Xueyan. Measurement and correlation of solubilities of C.I. Disperse Red 73, C.I. Disperse Blue 183 and their mixture in supercritical carbon dioxide[J]. Chinese Journal of Chemical Engineering, 2010, 18(4):648-653.
[18] FERRI A, BANCHERO M, MANNA L, et al. Dye uptake and partition ratio of disperse dyes between a PET yarn and supercritical carbon dioxide[J]. The Journal of Supercritical Fluids, 2006, 37(1): 107-114.
doi: 10.1016/j.supflu.2005.07.001
[19] MONTERO G A, SMITH C B, HENDRIX W A, et al. Supercritical fluid technology in textile processing: an overview[J]. Industrial & Engineering Chemistry Research, 2000, 39(12): 4806-4812.
doi: 10.1021/ie0002475
[20] 汪孟艳. 超临界CO2体系溶解度参数的分子动力学模拟研究[D]. 天津: 天津大学, 2007:27-31.
WANG Mengyan. Study on solubility parameter of supercritical carbon dioxide by molecular dynamics simulation[D]. Tianjin: Tianjin University, 2007:27-31.
[21] 黄钢. 超临界流体染色产业化关键技术的研究[D]. 上海: 东华大学, 2010:55-57.
HUANG Gang. The study of key technologies on the dyeing of textiles in supercritical fluid on industrial scale[D]. Shanghai: Donghua University, 2010:55-57.
[1] 唐奇, 柴丽琴, 徐天伟, 王成龙, 王直成, 郑今欢. 聚乳酸/聚3-羟基丁酸-戊酸酯共混纤维及其雪尼尔纱的染色动力学[J]. 纺织学报, 2023, 44(06): 129-136.
[2] 吴伟, 纪柏林, 毛志平. 活性及分散染料染色新技术[J]. 纺织学报, 2023, 44(05): 1-12.
[3] 艾丽, 朱亚伟. 液体分散染料研发技术现状及其应用前景[J]. 纺织学报, 2023, 44(05): 220-227.
[4] 易菁源, 裴刘军, 朱赫, 张红娟, 王际平. 非水介质染色体系中分散染料对涤纶/棉混纺织物的沾色研究[J]. 纺织学报, 2023, 44(05): 29-37.
[5] 王小艳, 马子婷, 许长海. 基于高耐碱高耐氧漂分散染料的涤盖棉织物漂染一浴加工工艺[J]. 纺织学报, 2023, 44(05): 38-45.
[6] 张典典, 李敏, 关玉, 王思翔, 胡桓川, 付少海. 仿植被可见光-近红外反射光谱特征的分散染料印花织物制备及其性能[J]. 纺织学报, 2023, 44(01): 142-148.
[7] 付政, 李敏, 何颖婷, 王春霞, 付少海. 纳米包覆分散染料的制备及其免水洗染色性能[J]. 纺织学报, 2022, 43(09): 129-136.
[8] 何崎, 李军令, 靳高岭, 刘津, 柯福佑, 陈烨, 王华平. 高卷曲聚醚酯/聚酯并列复合纤维的制备及其性能[J]. 纺织学报, 2022, 43(09): 70-75.
[9] 陈鹏, 廖世豪, 沈兰萍, 王瑄, 王鹏. 聚乳酸/聚酮共混纤维分散染料染色性能[J]. 纺织学报, 2022, 43(05): 12-17.
[10] 刘宇, 谢汝义, 宋亚伟, 齐元章, 王辉, 房宽峻. 涤/棉交织物一浴法轧染工艺[J]. 纺织学报, 2022, 43(05): 18-25.
[11] 何杨, 张瑞萍, 何勇, 范爱民. 激光改性涤纶织物的分散染料染色性能[J]. 纺织学报, 2022, 43(04): 102-109.
[12] 韩之欣, 吴伟, 王健, 徐红, 毛志平. 分散染料在超临界二氧化碳流体中的溶解性[J]. 纺织学报, 2022, 43(01): 153-160.
[13] 王成龙, 李立新, 吴绍明, 柴丽琴, 周岚. 染色促进剂对聚丁二酸丁二醇酯纤维分散染料染色动力学和热力学的影响[J]. 纺织学报, 2022, 43(01): 147-152.
[14] 邱靖斯, 刘越. 分散染料的细化分散及其对粒径影响研究进展[J]. 纺织学报, 2021, 42(08): 194-201.
[15] 王纯怡, 吴伟, 王健, 徐红, 毛志平. C.I.分散棕19在超临界CO2及水中溶解性的分子动力学模拟[J]. 纺织学报, 2020, 41(09): 95-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!