纺织学报 ›› 2024, Vol. 45 ›› Issue (07): 150-158.doi: 10.13475/j.fzxb.20230301201

• 服装工程 • 上一篇    下一篇

基于人体臂部的连续动态服装压力预测模型及准确性表征方法

谢红, 张林蔚, 沈云萍()   

  1. 上海工程技术大学 纺织服装学院, 上海 201600
  • 收稿日期:2023-03-06 修回日期:2023-12-29 出版日期:2024-07-15 发布日期:2024-07-15
  • 通讯作者: 沈云萍(1995—),女,实验师,硕士。主要研究方向为服装舒适性与功能。E-mail:abbyshenyp@163.com
  • 作者简介:谢红(1970—),女,教授,博士。主要研究方向为人体工效与功能服装。
  • 基金资助:
    国家重点研发计划重点专项项目(2018YFC2000901)

Continuous dynamic clothing pressure prediction model based on human arm and accuracy characterization method

XIE Hong, ZHANG Linwei, SHEN Yunping()   

  1. School of Textile and Fashion, Shanghai University of Engineering and Technology, Shanghai 201620, China
  • Received:2023-03-06 Revised:2023-12-29 Published:2024-07-15 Online:2024-07-15

摘要:

通过建立人体臂部与弹性压力臂套的三维有限元模型,对弹性压力臂套的穿套过程及人体肘关节着装后屈曲的2种工况进行数值模拟,计算得到人体臂部软组织外表面及弹性压力臂套随时间变化的等效应力;基于此数据建立线性回归模型,选取均方根误差作为线性回归模型表征指标,以用于表征织物基传感器测试的准确性。最后对模型进行应用,在有限元模型中选取臂部肘关节外侧屈曲点处,提取此处随时间变化的应力曲线,基于曲线上的特征点建立线性回归模型;选取2种柔性传感器,将其缝制在与模型屈曲点处同样的位置,测试匀速屈肘时的电信号数据,并通过力电耦合模型将电信号转换为应力值。选取均方根误差(RMSE)作为表征线性回归模型的指标,对2种传感器测试数据进行分析,结果显示其中一款传感器的测试值的回归效果与真实值的差距较小,可以认为此传感器运用于肘部弯曲测试准确度更高,效果更好。

关键词: 织物基传感器, 连续动态压力, 数值模拟, 服装压力, 人体臂部, 压力臂套

Abstract:

Objective With the development and application of flexible sensing technology, there is an urgent need for accurate evaluation of detected results, because there is no mature evaluation standard at present. For the fabric-type sensors, the output of its detection signal is closely related to the changing curvature of the human surface and the physical parameters of the material itself. Therefore, this study attempts to establish a continuous dynamic pressure finite element model for the interface between the human body and clothing, soas to provide theoretical basis for assessing the output accuracy of the fabric-type sensor. It could be used to characterize the accuracy of flexible sensing technology in practical application, so as to further promote the industrialization of smart wearable products.

Method In this research, the human arm is selected as the research object, and a three-dimensional finite element model of the human arm and the elastic pressure arm sleeve is established, based on the finite element principle. The processes of putting the elastic cuff around the human arm and the buckling of the human elbow joint after wearing the elastic arm sleeve are numerically simulated, and the equivalent stress of the soft tissue external surface of the human arm and the elastic pressure arm sleeve changing with time is calculated. Based on the data, a linear regression model was established, and root-mean-square error (RMSE) was selected as the representation index of the linear regression model to characterize the accuracy of the textile flexible sensor test.

Results In order to simplify the model, the fabric and bone were assumed to be isotropic linear elastomer, and the soft tissue was assumed to be isotropic hyper-elastomer. When the pressure arm sleeve was worn to the human arm, 16 points were determined according to the shape of the pressure arm. The effectiveness of the model was verified, and the relative error between the simulated value and the measured value was analyzed. The results showed that except for the outer part of ulna at the lower end of the arm (height 1-t side) and the muscle of the upper arm (height 4-p side), the finite element prediction results of the remaining 15 test points under three different fabrics were basically consistent with the pressure experiment results (0.2% to 8.9%), which can prove the validity of the model. Two types of textile flexible sensors were selected in the market, and the mechano-electric coupling model of the flexible sensors was established, and the electrical signals collected by the sensors were converted into stress values. The dynamic stress curve of the soft tissue surface on the outside of the elbow joint was extracted with time. Linear fitting was carried out according to the feature points, and the fitted curve was used as a linear regression model to characterize the application performance of the collected test data at the elbow joint. The RMSE was selected as the representative index of the regression model, and the accurate performance of the output signal applied to the elbow joint of the two sensors was characterized. The results showed that the regression effect of sensor A was better than that of sensor B. In other words, sensor A is more suitable for the measurement of elbow joint flexion with higher accuracy, indicating that this model could potentially characterize the performance of test accuracy of fabric-type flexible sensors.

Conclusion This paper proposes a method to characterize the accuracy of test data from textile flexible sensor. A finite element method was established to simulate the dynamic pressure of clothing, and a linear regression model was set up to calculate the dynamic pressure using RMSE to characterize the prediction error. For the future research, it is suggested that the establishment of materials and models can be further refined for different parts of the human body to balance the calculation time and get closer to the physiological characteristics of the human body. In order to simulate more complicated working conditions, it is necessary to further understand the biomechanics of the human body in the state of motion. In addition, it is necessary to explore the dynamic pressure model of clothing under multi-physical field coupling to better characterize the performance of fabric-type flexible sensors in practical applications.

Key words: fabric-based sensor, continuous dynamic pressure, numerical simulation, clothing pressure, human arm, elastic pressure arm sleeve

中图分类号: 

  • TS941.7

图1

压力臂套尺寸测量示意图"

图2

面料1(纵向)在不同拉伸速率下的应力-应变曲线"

图3

3种面料不同方向的应力-应变曲线"

表1

3种面料工程参数信息"

面料
编号
成分含量/% 厚度/
mm
密度/
(g·cm-3)
弹性模量
E/MPa
面料1 61%锦纶、39%氨纶 0.303 0.601 0.84
面料2 68%锦纶、32%氨纶 0.410 0.507 0.74
面料3 70%锦纶、30%氨纶 0.577 0.585 0.45

图4

Solid187单元与Shell181壳单元结构示意图"

表2

网格划分节点与单元数"

名称 节点数 单元数
尺骨 691 1 885
桡骨 880 2 400
肱骨 347 1 032
软组织 9 449 46 818
弹性压力臂套 1 220 1 200

图5

网格划分效果图"

图6

肘关节旋转中心局部坐标系设置"

图7

臂部压力测试点位置"

图8

3种弹性压力臂套仿真值与实测值数据对比图"

表3

2种传感器技术参数"

参数 传感器A
(拉伸-应变传感器)
传感器B
(压力-应变传感器)
外观尺寸 150 mm×30 mm 50 mm×50 mm
厚度 1 mm 2.3 mm
拉伸范围 0~50% 0~850 N
分辨率 0.05% 27 μm
线性度 99.90% 99.70%
耐久性 >30万次 >30万次
工作温度 <60 ℃ <60 ℃
洗涤 机洗>60次 机洗>60次

表4

无线蓝牙采集器技术参数"

产品尺寸 73.5 mm×58 mm×13.5 mm
显示屏尺寸 36.72 mm×48.96 mm
屏分辨率 240 RGB×320
测试通道数 可同时接3路测试对象
主要功能 电容数值显示;曲线显示;数据发送
量程 0~3 500 pF
分辨率 0.01 pF
显示范围 可调节,上限0~3 500 pF,下限0~10 pF
波特率 4种可调(9 600、19 200、38 400、115 200)
发送频率 4种可调(10、20、50、100 Hz)
发送模式 2种可调(HEX(16进制)、DEC(10进制))
电池 3.7 V/600 mA·h,满电可使用5 h

图9

传感器缝制位置"

图10

人体臂部穿着缝制传感器的弹性压力臂套"

图11

传感器A和B电信号转换后的压力测试数据"

图12

弹性压力臂套-人体肘部屈曲仿真回归模型"

[1] 周珍卉, 包肖婧, 范强, 等. 智能可穿戴柔性可拉伸应变传感器的研究进展[J]. 纺织科学与工程学报, 2022, 39(3): 96-101,108.
ZHOU Zhenhui, BAO Xiaojing, FAN Qiang, et al. Research progress of intelligent wearable flexible stretchable strain sensor[J]. Journal of Textile Science and Engineering, 2022, 39(3): 96-101,108.
[2] 贺瑛, 王进美, 金光. 柔性传感器在智能纺织品上的应用[J]. 合成纤维, 2022, 51(4): 21-25.
HE Ying, WANG Jinmei, JIN Guang. Application of flexible sensor in intelligent textile[J]. Synthetic Fibers, 2022, 51(4): 21-25.
[3] 舒灵龙. 柔性可穿戴技术在纺织服装方面的应用[J]. 丝网印刷, 2022(2): 49-52.
SHU Linglong. Application of flexible wearable technology in textile and apparel[J]. Screen Printing, 2022(2): 49-52.
[4] 郑维炜, 张弦. 柔性可穿戴传感器的研究进展[J]. 合成纤维, 2022, 51(3): 39-43.
ZHENG Weiwei, ZHANG Xian. Research progress of flexible wearable sensors[J]. Journal of Synthetic Fibers, 2022, 51(3): 39-43.
[5] 柴蕾. 智能可穿戴材料在皮革服装设计中的应用[J]. 西部皮革, 2022, 44(20): 28-30.
CHAI Lei. Application of intelligent wearable materials in leather clothing design[J]. Western Leather, 2022, 44(20): 28-30.
[6] 晚春雪, 吴子悦, 黄显. 柔性可穿戴传感与智能识别技术研究进展[J]. 中国科学:化学, 2022, 52(11): 1913-1924.
WAN Chunxue, WU Ziyue, HUANG Xian. Research progress of flexible wearable sensing and intelligent recognition technology[J]. Science in China: Chemistry, 2022, 52(11): 1913-1924.
[7] 孙嘉琪, 于晓坤, 王克毅. 柔性织物传感器研究现状与发展[J]. 功能材料与器件学报, 2020, 26(1): 16-23.
SUN Jiaqi, YU Xiaokun, WANG Keyi. Research status and development of flexible fabric sensor[J]. Journal of Functional Materials and Devices, 2020, 26(1): 16-23.
[8] 王金凤. 导电针织柔性传感器的电-力学性能及内衣压力测试研究[D]. 上海: 东华大学, 2013:86-91.
WANG Jinfeng. Research on electro-mechanical properties of conductive knitted flexible sensor and pressure test of underwear[D]. Shanghai: Donghua University, 2013:86-91.
[9] GAO C, KUKLANE K, HOLMÉR I. Thermoregulatory manikins are desirable for evaluations of intelligent clothing and smart textiles[C]// Proceedings of the Eighth International Meeting for Manikins and Modeling (8I3M).[s.l.]: Sport Innovation Centre, 2010:25-28.
[10] HOLMER I, NILSSON H. Heated manikins as a tool for evaluating clothing[J]. Annals of Occupational Hygiene, 1995, 39(6): 809-818.
[11] 苏奎, 赵若晗, 刘博强, 等. 基于Mimics的CT三维重建应用分析[J]. 软件, 2020, 41(3): 66-68.
SU Kui, ZHAO Ruohan, LIU Boqiang, et al. Application analysis of ct 3D reconstruction based on mimics[J]. Software, 2020, 41(3): 66-68.
[12] YU W, FAN J T, QIAN X M. A soft mannequin for the evaluation of pressure garments on human body[J]. Sen'i Gakkaishi, 2004, 60(2): 57-64.
[13] 万超杰. 人体大臂软组织活体力学特性分析[D]. 哈尔滨: 哈尔滨工业大学, 2017:43-44.
WAN Chaojie. Dynamic Analysis of human arm Soft tissue[D]. Harbin: Harbin Institute of Technology, 2017:43-44.
[14] DIRIDOLLOU S, PATAT F, GENS F, et al. In vivo model of the mechanical properties of the human skin under suction[J]. Skin Research and Technology, 2000, 6(4):214-221.
pmid: 11428960
[15] 李海龙. 人体上肢生物力学建模及肌肉力预测分析[D]. 哈尔滨: 哈尔滨工程大学, 2016:9-12.
LI Hailong. Biomechanical modeling and muscle force Prediction of human upper limb[D]. Harbin: Harbin Engineering University, 2016:9-12.
[1] 刘倩倩, 尤健明, 王琰, 孙成磊, JIRI Militky, DANA Kremenakova, JAKUB Wiener, 祝国成. 纤维弯曲对其集合体过滤特性影响的稳态数值分析[J]. 纺织学报, 2024, 45(07): 31-39.
[2] 韩烨, 田苗, 蒋青昀, 苏云, 李俊. 织物-空气层-皮肤三维结构建模及其传热模拟[J]. 纺织学报, 2024, 45(02): 198-205.
[3] 王青, 梁高翔, 殷俊清, 盛晓超, 吕绪山, 党帅. 新型气流牵伸通道结构模型的构建与性能分析[J]. 纺织学报, 2023, 44(11): 52-60.
[4] 杨孟想, 刘让同, 李亮, 刘淑萍, 李淑静. 机织物的热传递与强热条件下热防护性能[J]. 纺织学报, 2023, 44(11): 74-82.
[5] 高艺华, 钱付平, 王晓维, 汪虎明, 高杰, 陆彪, 韩云龙. 纺织车间定向均流送风口结构设计及其送风性能[J]. 纺织学报, 2023, 44(08): 189-196.
[6] 连力平, 杨鹏程, 余子健, 龙阳昭, 肖渊. 织物表面激光打标工艺参数的数值模拟及选取方法[J]. 纺织学报, 2023, 44(06): 121-128.
[7] 樊百林, 张昌睿, 郭佳华, 黄钢汉, 尉国梁. 基于Flow Simulation的喷气织机辅助喷嘴喷孔结构优化[J]. 纺织学报, 2023, 44(06): 200-206.
[8] 缪莹, 熊诗嫚, 郑敏博, 唐建东, 张慧霞, 丁彩玲, 夏治刚. 高光洁处理对聚酰亚胺短纤纱及其织物性能的影响[J]. 纺织学报, 2023, 44(02): 118-127.
[9] 孙戬, 姜博艺, 张守京, 胡胜. 异纤分拣机剔除喷管结构参数对其性能的影响[J]. 纺织学报, 2022, 43(10): 169-175.
[10] 诸文旎, 徐润楠, 胡蝶飞, 姚菊明, MILITKY Jiri, KREMENAKOVA Dana, 祝国成. 基于随机算法的纤维材料过滤特性仿真分析[J]. 纺织学报, 2022, 43(09): 76-81.
[11] 余玉坤, 孙玥, 侯珏, 刘正, 易洁伦. 单层服装间隙量的动态有限元模型构建与仿真[J]. 纺织学报, 2022, 43(04): 124-132.
[12] 刘宜胜, 周鑫磊, 刘丹丹. 气动折入边装置中纱线初始位置对折边效果的影响[J]. 纺织学报, 2022, 43(03): 168-175.
[13] 刘杰, 高志. 基于柔性薄膜传感器的服装压力检测仪研制[J]. 纺织学报, 2021, 42(12): 159-165.
[14] 钱淼, 胡恒蝶, 向忠, 马成章, 胡旭东. 非均布热管换热器的流动及其传热性能[J]. 纺织学报, 2021, 42(12): 151-158.
[15] 周浩邦, 沈敏, 余联庆, 肖世超. 辅助喷嘴结构对喷气织机异形筘内合成流场特征的影响[J]. 纺织学报, 2021, 42(11): 166-172.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!