纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 183-189.doi: 10.13475/j.fzxb.20230305901

• 纺织工程 • 上一篇    下一篇

三维角联锁机织复合材料的制备及其弯曲压缩失效机制

李天宇1, 沈伟1,2, 陈立峰1,2, 竺铝涛1,2,3()   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.绍兴宝旌复合材料有限公司, 浙江 绍兴 312000
    3.浙江理工大学桐乡研究院有限公司, 浙江 嘉兴 314599
  • 收稿日期:2023-03-27 修回日期:2024-04-06 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 竺铝涛(1983—),男,副教授,博士。研究方向为产业用纺织品和纺织结构复合材料。E-mail:zhult@zstu.edu.cn
  • 作者简介:李天宇(1996—),男,硕士生。主要研究方向为纺织复合材料的制备及性能研究。
  • 基金资助:
    浙江省基础公益研究计划项目(LGG21E050025);浙江省“尖兵”研发攻关计划项目(2023C01097);浙江理工大学桐乡研究院有限公司开放基金类项目(TYY202302)

Preparation and bending compression failure mechanism of three-dimensional angle interlock woven composites

LI Tianyu1, SHEN Wei1,2, CHEN Lifeng1,2, ZHU Lütao1,2,3()   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Shaoxing Baojing Composite Material Co., Ltd., Shaoxing, Zhejiang 312000, China
    3. Zhejiang Sci-Tech University Tongxiang Research Institute, Jiaxing, Zhejiang 314599, China
  • Received:2023-03-27 Revised:2024-04-06 Published:2024-08-15 Online:2024-08-21

摘要:

为掌握三维纺织结构复合材料在准静态下的失效机制,以碳纤维角联锁预制体为增强体,环氧树脂为基体,采用树脂传递模塑成型工艺制备三维角联锁机织复合材料,并对试样进行匀速载荷下的三点弯曲和压缩试验。采用X射线计算机断层扫描技术观测材料内部结构的损伤情况,并分析材料的失效机制。结果表明:三维角联锁机织复合材料的弯曲强度达到136.43 MPa,弹性模量接近20 GPa,材料的抗弯曲性能优异;基体开裂、下表面纤维断裂和分层是材料的主要弯曲失效模式;材料沿厚度方向的压缩应力达到266.17 MPa,具有良好的抗压缩性能;当承受压缩载荷时,材料在厚度方向上的主要破坏机制表现为剪切破坏。

关键词: 角联锁结构, 复合材料, 角联锁机织复合材料, 碳纤维, 弯曲性能, 压缩性能, 失效机制

Abstract:

Objective Three-dimensional(3-D) woven fabric is an fabric structure wherein the upper and lower layers of fabric are interconnected using warp or weft yarns to form an angle interlock structure. Due to their exceptional mechanical properties, 3-D woven composites have gained increasingly popularity in aerospace and military applications. While most research has focused on the failure mechanism of angle interlock woven composite (AIWC) under dynamic load, it is crucial to also consider the various loads that AIWCs endure in practical engineering applications, partications in quasi-static environments. Although the quasi-static load is implicit, the damage and failure resulting from such load cansignificantly impact materials safety, underscoring the importance of studying the mechanical properties of AIWCs in quasi-static environments.

Method In this study, 3-D woven composites were prepared using the vacuum assisted resin transfer molding (VARTM) technique. Subsequently, their bending and compression properties were investigated through three-point bending and compression experiments. X-ray computed tomography (XR-CT) technology was employed to observe microstructural damage profiles and analyze the failure mechanism of the material.

Results In the three-point bending test, the maximum load on the 3-D woven composites reached 1 108.3 N, the bending strength reached 136.43 MPa, and the bending modulus was close to 20 GPa. The primary failure modes of the material included resin compression fracture on the upper and lower surfaces, fiber layer delamination, and warp yarn tension fracture on the lower surface. In terms of compression resistance in the thickness direction, the 3-D woven composites exhibited favorable pefformance. Under compression load, the material experienced significant shear failure along the 45° direction in the thickness, accompanied by resin fragmentation and wavy delamination in both longitudinal and latitudinal directions. Additionally, compression expansion was observed in the latitudinal section. These phenomena were attributed to the appearance of the shear band, resulting in relative slippage of the resin near the shear band and higher shear loads on the straight weft yarns. The bending sections of the warp and straight weft yarns experienced compression against each other. Ultimately, when the yarns reached their extreme limits, the warp and weft yarn fractured, leading to material failure.

Conclusion In conclusion, this study successfully prepared 3-D woven composites using the VARTM technique. The three-point bending test demonstrated that the bending strength of 3-D angle interlocking woven composites reached 136.43 MPa, with a bending modulus close to 20 GPa, indicating excellent bending performance. The main failure modes of the material were matrix cracking, fiber fracture on the lower surfaces, and delamination. The material exhibited good compression resistance in the thickness direction, with a compressive stress reaching 266.17 MPa. The primary failure mechanism in the thickness direction under compression loads was shear failure. In the investigation of the mechanical properties of 3-D woven composites, several aspects require further observation. Firstly, since the material is composed of different warp and weft yarns, it is crucial to study its mechanical properties in different directions. Additionally, apart from the experimental process, the accuracy of the experiments can be verified through finite element simulations and comparison with experimental results.

Key words: angle interlock structure, composite, angle interlock woven composite, carbon fiber, bending property, compression property, failure mechanism

中图分类号: 

  • TB332

图1

碳纤维角联锁织物预制件"

图2

复合材料成品"

图3

切割后的试样"

图4

复合材料压缩试样"

图5

准静态压缩测试图"

图6

弯曲试样应力-应变曲线"

图7

压缩试样应力-应变曲线"

图8

材料弯曲破坏模式"

图9

弯曲试样微观损伤SEM照片(×70)"

图10

材料压缩破坏模式"

图11

压缩试样微观损伤SEM照片(×70)"

[1] DANG M G, LI D S, JIANG L. Temperature effects on mechanical response and failure mechanism of 3D angle-interlock woven carbon/epoxy composites[J]. Composites Communications, 2020, 18: 37-42.
[2] 马全胜, 李学臻, 王玉琳, 等. 三维立体织物复合材料研究与进展[J]. 化工新型材料, 2021, 49(S1): 279-282.
MA Quansheng, LI Xuezhen, WANG Yulin, et al. Research and development of three-dimensional fabric composites[J]. New Chemical Materials, 2021, 49(S1): 279-282.
[3] SUDHIN A U, MANU R, AJEESH G, et al. Comparison of properties of carbon fiber reinforced thermoplastic and thermosetting composites for aerospace applications[J]. Materials Today, 2020, 24: 453-462.
[4] SOUTIS C. Fibre reinforced composites in aircraft construction[J]. Progress in Aerospace Sciences, 2005, 41(2): 143-151.
[5] DELKOWSKI M, SMITH C T G, ANGUITA J V, et al. Increasing the robustness and crack resistivity of high-performance carbon fiber composites for space applications[J]. iScience, 2021, 24(6): 1-13.
[6] XU Y, YIN J, XIONG X, et al. Effect of preform and carbon matrix on bending strength of Cf/Cu/C composites[J]. Ceramics International, 2018, 44(17): 20947-20954.
[7] SHAO H C, ZHANG Y Y, HUSSAIN S, et al. Effects of preform structures on the performance of carbon and carbon composites[J]. Science of Advanced Materials, 2019, 11(7): 945-953.
[8] 周凯, 熊杰, 杨斌, 等. 三维正交机织复合材料的动态压缩性能[J]. 复合材料学报, 2009, 26(2): 171-175.
ZHOU Kai, XIONG Jie, YANG Bin, et al. Dynamic compression properties of three-dimensional orthogonal woven composites[J]. Acta Materiae Compositae Sinica, 2009, 26(2): 171-175.
[9] HOU Y Q, HU H J, SUN B Z, et al. Strain rate effects on tensile failure of 3-D angle-interlock woven carbon fabric[J]. Materials & Design, 2013, 46: 857-866.
[10] 杨甜甜, 王岭, 邱海鹏, 等. 三维机织角联锁SiCf/SiC复合材料弯曲性能及损伤机制[J]. 纺织学报, 2020, 41(12): 73-80.
doi: 10.13475/j.fzxb.20200402708
YANG Tiantian, WANG Ling, QIU Haipeng, et al. Bending properties and damage mechanism of three-dimensional woven angle interlocking SiCf/SiC composites[J]. Journal of Textile Research, 2020, 41(12): 73-80.
doi: 10.13475/j.fzxb.20200402708
[11] 曹欣怡, 彭秀钟, 范进, 等. 一种改进的基于两单胞模型的三维角联锁机织复合材料弹性性能数值预测方法及实验验证[J]. 复合材料学报, 2021, 38(11): 3704-3713.
CAO Xinyi, PENG Xiuzhong, FAN Jin, et al. An improved numerical prediction method of elastic properties based on two unit-cells models for 3D angle-interlock woven composites and experimental verifica-tion[J]. Acta Materiae Compositae Sinica, 2021, 38(11): 3704-3713.
[12] XU F J, ZHU L T, YANG S, et al. X-ray 3D microscopy analysis of fracture mechanisms for 3D orthogonal woven E-glass/epoxy composites with drilled and moulded-in holes[J]. Composites Part B, 2018, 133(15): 193-202.
[13] ZHU L T, XU F J, SHEN W. Numerical analyses of axial tension mechanisms of 3D orthogonal woven E-glass/epoxy composites with drilled holes[J]. Textile Research Journal, 2022, 92(19/20): 3478-3487.
[14] 阎业海, 赵彤, 余云照. 复合材料树脂传递模塑工艺及适用树脂[J]. 高分子通报, 2001(3): 24-35.
YAN Yehai, ZHAO Tong, YU Yunzhao. Composite resin transfer molding process and applicable resin[J]. Polymer Bulletin, 2001(3): 24-35.
[15] 朱怡臻, 王瑛, 陈鸣亮, 等. 先进树脂基复合材料RTM成型工艺研究及应用进展[J]. 塑料工业, 2020, 48(5): 18-22,128.
ZHU Yizhen, WANG Ying, CHEN Mingliang, et al. Research and application progress of RTM Molding process for advanced resin matrix composites[J]. China Plastics Industry, 2020, 48(5): 18-22,128.
[1] 岳旭, 王蕾, 孙丰鑫, 潘如如, 高卫东. 基于ABAQUS的平纹织物同面对向弯曲有限元模拟[J]. 纺织学报, 2024, 45(08): 165-172.
[2] 陈小明, 吴凯杰, 郑宏伟, 张敬义, 苏星兆, 辛世纪, 郭东升, 陈利. 针刺/缝合多尺度联锁复合材料I型层间力学行为[J]. 纺织学报, 2024, 45(08): 173-182.
[3] 李皎, 辛世纪, 陈利, 陈小明. 双工位针刺机器人系统设计[J]. 纺织学报, 2024, 45(07): 204-212.
[4] 袁久刚, 王应雪, 周爱晖, 徐进, 唐颖, 范雪荣. 大型真菌及菌丝体复合材料的应用研究进展[J]. 纺织学报, 2024, 45(07): 223-229.
[5] 王遵钦, 刘东炎, 王晓旭, 张典堂. 机织角联锁变密度复合材料的面外压缩力学特性[J]. 纺织学报, 2024, 45(07): 63-71.
[6] 马亮, 俞旭华, 刘文武, 李慈, 方以群, 李俊, 徐佳骏. 气凝胶复合材料在干式潜水服内胆隔热性能提升中的应用[J]. 纺织学报, 2024, 45(07): 181-188.
[7] 贾笑娅, 王蕊宁, 孙润军. SiO2/聚乙二醇200/碳纳米管剪切增稠液浸渍芳纶织物及其复合材料防刺性能[J]. 纺织学报, 2024, 45(04): 151-159.
[8] 冯亚, 孙颖, 崔艳超, 刘梁森, 张宏亮, 胡俊军, 居傲, 陈利. 含镍铬合金丝纬编电加热层复合材料的层间剪切性能[J]. 纺织学报, 2024, 45(04): 89-95.
[9] 杨洋, 刘成霞. 可视化织物弯曲性测试方法[J]. 纺织学报, 2024, 45(03): 74-80.
[10] 方春月, 刘紫璇, 贾立霞, 阎若思. 双等离子体改性超高分子量聚乙烯复合材料的弹道响应[J]. 纺织学报, 2024, 45(02): 77-84.
[11] 谷元慧, 王曙东, 张典堂. 基于多尺度模型的编织复合材料圆管扭转行为有限元模拟[J]. 纺织学报, 2023, 44(12): 88-95.
[12] 李麒阳, 季诚昌, 郗欣甫, 孙以泽. 大尺寸异形结构芯模编织策略及纱线轨迹预测[J]. 纺织学报, 2023, 44(10): 188-195.
[13] 左祺, 吴华伟, 王春红, 杜娟娟. 纱线结构对苎麻短纤纱复合材料拉伸性能的影响[J]. 纺织学报, 2023, 44(10): 81-89.
[14] 钱晨, 黄博翔, 李永强, 万军民, 傅雅琴. 增强纤维用上浆剂的耐高温化改性研究进展[J]. 纺织学报, 2023, 44(09): 232-242.
[15] 孙明涛, 陈成玉, 闫伟霞, 曹珊珊, 韩克清. 针刺加固频率对黄麻纤维/聚乳酸短纤复合板性能的影响[J]. 纺织学报, 2023, 44(09): 91-98.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!