纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 134-141.doi: 10.13475/j.fzxb.20230306101

• 纺织工程 • 上一篇    下一篇

取向聚氨酯纳米纤维膜卷纱的制备及其力学性能

陈灿, 拖晓航, 王迎()   

  1. 大连工业大学 纺织与材料工程学院, 辽宁 大连 116034
  • 收稿日期:2023-03-29 修回日期:2024-05-03 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 王迎(1976—),女,教授,博士。主要研究方向为多维度多尺度微-纳米纤维、纱线的制备及功能产品开发。E-mail:wangying@dlpu.edu.cn
  • 作者简介:陈灿(1998—),男,硕士生。主要研究方向为静电纺纳米纤维的制备和性能研究。
  • 基金资助:
    辽宁省重大科技专项项目(2019JH/10100010)

Preparation and mechanical properties of yarns made from rolling oriented polyurethane nanofiber membranes

CHEN Can, TUO Xiaohang, WANG Ying()   

  1. College of Textile and Materials Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
  • Received:2023-03-29 Revised:2024-05-03 Published:2024-08-15 Online:2024-08-21

摘要:

为解决纳米纤维膜强力低、使用稳定性差的问题,通过将聚氨酯(PU)树脂溶于二甲基甲酰胺和四氢呋喃中制备纺丝液,再经静电纺丝制备纳米纤维膜,并通过加捻和热定形制得PU纳米纤维膜卷纱。比较了纳米纤维膜和膜卷纱的表面形貌,对纳米纤维膜卷纱的力学性能、热学性能和孔隙率进行了测试。结果表明:当纺丝液中PU质量分数为14%和15%时,纤维成膜性良好;纳米纤维膜卷纱表面纤维表现出明显的取向性,较粗的取向纤维与较细的非取向纤维相互连接形成网络结构;随着PU质量分数的增加,取向纤维比例明显增加;与纳米纤维膜相比,纳米纤维膜卷纱的断裂强力、拉伸性能明显提高;当PU质量分数为15%时,PU纳米纤维膜卷纱的断裂强度最高,为0.84 cN/dtex,弹性回复率为98%;PU质量分数为14%的纳米纤维膜卷纱经100次拉伸的弹性回复率为83%;热定形纳米纤维膜卷纱的比表面积为1.636 2 m2/g,孔容为2 965 m3/g,平均孔径为12.39 nm。

关键词: 静电纺丝, 聚氨酯, 纳米纤维膜, 膜卷纱, 取向性

Abstract:

Objective Electrospun nanofiber membranes have shown the shortcomings of low strength and poor stability for certain applications. To compare the mechanical properties of membranes and yarns and to further discuss the feasibility of industrial production of membrane-rolling yarns, polyurethane (PU) nanofiber membranes were prepared by needle-free electrospinning and membrane-rolling yarns were made by twisting and heat setting.

Method The PU nanofibrous membranes were prepared by the needle-less electrostatic spinning. Membrane-rolling yarns were prepared by bundling nanofiber membranes through a self-made twisting instrument, which was held at one end and twisted at the other. The membrane-rolling yarns were heat-set. The mechanical properties, surface properties and internal porosity of PU nanofibrous membranes and yarns were characterized by the scanning electron microscope, tensile tester and high-speed automatic specific surface and porosity analyzer.

Results Spinning solution was formed by dissolving PU particles in the mixed solution of dimethylformamide and tetrahydrofuran (mass ratio 1∶1). The concentration of PU in spinning solution has great influence on the surface morphology of nanofibrous membranes. With the increase of PU mass fractions, the diameter of nanofibers became larger, and the membrane forming ability was enhanced. When the mass fraction of PU was between 13% and 15%, the morphology of nanofibrous membranes were found to be stable and the nanofibrous diameters were uniform. The surface of the membrane-rolling yarns was smooth, and because the fibers were arranged along the direction of force during twisting, the surface of membrane-rolling yarns representing a three-dimensional network structure composed of oriented fibers and non-oriented fibers. With the increase of PU mass fractions, the diameters of the oriented fibers became thicker and the proportion of oriented fibers was increased. From the performance point of view, PU membrane-rolling yarn showed higher mechanical properties compared with nanofibrous membrane, and its tensile strength were slightly lower than that of commercially PU filaments. When the mass fraction of PU is 15%, the elastic recovery rate of PU membrane-rolling yarn reached 98%, and when the mass fraction of PU was 14%, the elastic recovery rate of PU membrane-rolling yarn (stretching 100 cycles) reached 83%. Before and after heat setting, the temperature did not have a great influence on the structure and properties of PU nanofiber membrane yarn, so the strength of membrane yarn did not change significantly. It was found that the nanofibrous membrane and the membrane-rolling yarn were porous in both meso and micro scales. The surface area of membrane-rolling yarn was 1.636 2 m2/g, the pore volume is 2.965 m3/g, and the average pore size is 12.39 nm.

Conclusion This work confirms a new idea for the efficient production and use of nanofibrous yarns. The prepared PU membrane-rolling yarns have the characteristics of high strength and high elastic recovery. Moreover, the PU membrane-rolling yarn has the advantages of high porosity, specific surface area and activity due to the composition of the nanofibers. Therefore, for PU membrane-rolling yarns itself, it can be applied to sound-absorbing textiles, filter materials and so on, and the PU membrane-rolling yarns could potentially be loaded with functional particles and applied to various functional and smart textiles.

Key words: electrostatic spinning, polyurethane, nanofibrous membrane, membrane-rolling yarn, orientation

中图分类号: 

  • TQ340.69

图1

纳米纤维膜加捻仪器和膜卷纱"

表1

纺丝液性质"

编号 PU质量
分数/%
黏度/
(mPa·s)
电导率/
(mS·cm-1)
表面张力/
(mN·m-1)
1 11 250 0.133 32.37
2 12 352 0.156 32.51
3 13 554 0.176 32.77
4 14 1 016 0.207 33.07
5 15 1 328 0.327 33.35

图2

不同PU质量分数纳米纤维膜的SEM照片"

图3

不同PU质量分数纳米纤维膜卷纱的SEM照片"

图4

不同PU质量分数纳米纤维膜卷纱的表面主体纤维轨迹"

图5

不同PU质量分数纳米纤维膜卷纱的表面纤维取向度"

图6

不同PU质量分数纳米纤维膜的拉伸断裂曲线"

图7

不同PU质量分数纳米纤维膜卷纱的拉伸断裂曲线"

图8

纳米纤维膜和膜卷纱的断裂强度"

图9

膜卷纱的1次拉伸和100次拉伸弹性回复性能"

图10

不同样品的等温吸附-脱附曲线"

图11

不同样品的孔径分布"

[1] HASSAN Tufail, SALAM Abdul, KHAN Amina, et al. Functional nanocomposites and their potential applications: a review[J]. Journal of Polymer Research, 2021. DOI:10.1007/s10965-021-02408-1.
[2] KAMAL Abdallah, ASHMAWY Mayar, SHANMUGAN S, et al. Fabrication techniques of polymeric nanocomposites: a comprehensive review[J]. Journal of Mechanical Engineering Science, 2022, 236(9): 4843-4861.
[3] HABIBI Sima, GHAJARIRH Atieh. Application of nanofibers in virus and bacteria filtration russ[J]. Appl Chem, 2022, 95: 486-498.
[4] BAZBOUZ Mohamed Basel, STYLIOS George K. Mechanism for spinning continuous twisted composite nanofiber yarns[J]. European Polymer Journal, 2008(44): 1-12.
[5] ALI Usman, ZHOU Yaqiong, WANG Xungai, et al. Direct electrospinning of highly twisted, continuous nanofiber yarns[J]. Journal of The Textile Institute, 2012(103): 80-88.
[6] FARRZAD Dabirian, et al. SEYED Abdolkarim Hosseini Ravandi, JUAN P Hinestroza, Conformal coating of yarns and wires with electrospun nanofibers[J]. Polymer Engineering & Science, 2012, 52(8): 1724-1732.
[7] HE Jianxin, ZHOU Yuman, WANG Lidan, et al. Fabrication of continuous nanofiber core-spun yarn by a novel electrospinning method[J]. Fibers and Polymers, 2014, 15(10): 2061-2070.
[8] ZHOU Baoming, JIANG Xiaodong, WANG Rui, et al. Developments in electrospinning of nanofiber yarns[J]. Journal of Physics: Conference Series, 2021, 1790(3): 15-17.
[9] WANG Zhihu, HE Hongwei, LIU Guosai, et al. A newly reaction curing mechanism in conjugate electrospinning process[J]. Materials Letters, 2019, 254(4): 5-8.
[10] CHANG Guoqing, LI Aike, XU Xiaoqian, et al. Twisted polymer microfiber/nanofiber yarns prepared via direct fabrication[J]. Industrial & Engineering Chemistry Research, 2016, 55(4): 7048-7051.
[11] PANT Hem Raj, BAEK Wooil, NAM Ki Taek, et al. Fabrication of polymeric microfibers containing rice-like oligomeric hydrogel nanoparticles on their surface: a novel strategy in the electrospinning process[J]. Materials Letters, 2011, 65(4): 1441-1444.
[12] 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(1): 1-9.
YANG Yuchen, QIN Xiaohong, YU Jianyong. Research progress of functional yarn of electrostatic spinning nanofibers[J]. Journal of Textile Research, 2021, 42(1): 1-9.
[13] 刘宇健, 谭晶, 陈明军, 等. 静电纺纳米纤维纱线研究进展[J]. 纺织学报, 2020, 41(2): 165-171.
LIU Yujian, TAN Jing, CHEN Mingjun, et al. Research progress of electrostatic spinning nanofiber yarns[J]. Journal of Textile Research, 2020, 41(2): 165-171.
[14] 郑海春. 熔纺氨纶长丝的结构和性能研究[D]. 苏州: 苏州大学, 2016: 22-24.
ZHENG Haichun. Study on structure and properties of melt-spun spandex filament[D]. Suzhou: Soochow University, 2016: 22-24.
[1] 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17.
[2] 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115.
[3] 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126.
[4] 钱洋, 张璐, 李晨阳, 王荣武. 静电纺海藻酸钠复合纳米纤维膜制备及其性能[J]. 纺织学报, 2024, 45(08): 18-25.
[5] 刘嘉炜, 季东晓, 覃小红. 空气过滤用静电纺纳米纤维材料研究进展[J]. 纺织学报, 2024, 45(08): 35-43.
[6] 刘德龙, 王红霞, 林童. 气流辅助的静电纺丝技术研究进展[J]. 纺织学报, 2024, 45(08): 44-53.
[7] 杨培芹, 潘志娟. 丁香酚/桑皮微纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(08): 72-80.
[8] 徐豫松, 周杰, 甘佳怡, 张涛, 张先明. 含磷氮水性聚氨酯的制备及其在涤纶织物阻燃整理中应用[J]. 纺织学报, 2024, 45(07): 112-120.
[9] 于承浩, 王元非, 于腾波, 吴桐. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45(07): 18-23.
[10] 于雯, 邓南平, 唐湘泉, 康卫民, 程博闻. 静电溶吹微纳无机纤维制备技术及其应用进展[J]. 纺织学报, 2024, 45(07): 230-239.
[11] 程献伟, 刘亚文, 关晋平, 陈瑞. 生物质植酸改性聚氨酯涂层锦纶6织物的制备及其阻燃性能[J]. 纺织学报, 2024, 45(06): 120-126.
[12] 刘思彤, 金丹, 孙东明, 李懿轩, 王艳慧, 王静, 王原. 静电纺纳米纤维结构的研究进展[J]. 纺织学报, 2024, 45(06): 201-209.
[13] 徐振凯, 马鸣, 蔺多佳, 刘航, 张剑峰, 夏鑫. 自支撑聚吡咙基碳纤维负极材料的制备及其电化学性能[J]. 纺织学报, 2024, 45(06): 23-31.
[14] 时吉磊, 陈廷彬, 付少海, 张丽平. 低红外发射率控温热红外伪装材料的制备与性能[J]. 纺织学报, 2024, 45(06): 32-38.
[15] 权衡, 钱赛龙, 刘诗楠, 邹春梅, 倪丽杰. 非线性阳离子聚氨酯改性有机硅柔软剂的制备及其应用性能[J]. 纺织学报, 2024, 45(05): 121-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!