纺织学报 ›› 2024, Vol. 45 ›› Issue (07): 78-85.doi: 10.13475/j.fzxb.20230307301
鲁颖科1, 金炳奇1, 徐涛1, 高一蕾1, 邓炳耀1, 李昊轩1,2()
LU Yingke1, JING Bingqi1, XU Tao1, GAO Yilei1, DENG Bingyao1, LI Haoxuan1,2()
摘要:
针对目前光驱动界面式水蒸发研究忽略低成本规模化生产和淡水产率低的问题,以粘胶纤维为原料,采用针刺非织造技术加工得到粘胶纤维非织造材料,选用光伏电池与粘胶纤维非织造材料制备水电联产装置,巧妙借助光伏电池工作时产生的废热实现界面蒸发,同时解决光伏电池在工作中产生高温导致发电效率降低的问题。研究了不同面密度的粘胶纤维非织造材料对装置蒸发速率的影响,以及该装置的水电联产性能。结果表明:粘胶纤维非织造材料运输水进行蒸发可有效降低光伏电池的温度,在1 kW/m2的光照强度下,使用面密度为160 g/m2的粘胶纤维非织造材料搭建的装置蒸发速率最佳,可达1.36 kg/(m2·h),光伏电池的光电转换效率相较于界面蒸发降温前提高0.7%;经户外实验,该水电联产装置1 d可稳定收集2.23 kg/m2的水和37.3 kW·h/m2的电,且收集的淡水达到世界卫生组织饮用水标准,初步验证了利用传统非织造材料和光伏发电结合实现水电联产和规模化应用的潜在可能。
中图分类号:
[1] | WU X, CHEN G, OWENS G, et al. Photothermal materials: a key platform enabling highly efficient water evaporation driven by solar energy[J]. Materials Today Energy, 2019, 12: 277-296. |
[2] | XU W, HU X, ZHUANG S, et al. Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018. DOI:10.1002/aenm.201702884. |
[3] | 丁倩, 邓炳耀, 李昊轩. 全纤维光驱动界面蒸发系统在海水淡化工程中的应用研究进展[J]. 纺织学报2022, 43(1):36-42. |
DING Qian, DENG Bingyao, LI Haoxuan. Research progress in all-fiber solar induced interface evaporation system to assist desalination with zero carbon emission[J]. Journal of Textile Research, 2022, 43(1):36-42. | |
[4] | ITO Y, TANABE Y, HAN J, et al. Multifunctional porous graphene for high-efficiency steam generation by heat localization[J]. Advanced Materials, 2015, 27(29): 4302-4307. |
[5] | 李政通, 王成兵. 多尺度Ag/CuO复合光热材料的制备及在海水淡化中的应用[J]. 无机化学报, 2020, 36(8): 1457-1464. |
LI Zhengtong, WANG Chengbing. Multi-scale Ag/CuO photothermal materials: preparation and application in seawater desalination[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(8): 1457-1464. | |
[6] | LI H, YAN Z, LI Y, et al. Latest development in salt removal from solar-driven interfacial saline water evaporators: advanced strategies and challenges[J]. Water Research, 2020. DOI: 10.1016/j.watres.2020.115770. |
[7] | GAO M, ZHU L, PEH C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy produc-tion[J]. Energy & Environmental Science, 2019, 12(3): 841-864. |
[8] | LI H, WEN H, ZHANG Z, et al. Reverse thinking of the aggregation-induced emission principle: amplifying molecular motions to boost photothermal efficiency of nanofibers[J]. Angewandte Chemie International Edition, 2020, 59(46): 20371-20375. |
[9] | SHARAF M, YOUSEF M S, HUZAYYIN A S. Review of cooling techniques used to enhance the efficiency of photovoltaic power systems[J]. Environmental Science and Pollution Research, 2022, 29(18): 26131-26159. |
[10] | WU X, CHEN G, OWENS G, et al. Photothermal mate rials: a key platform enabling highly efficient water evaporation driven by solar energy[J]. Materials Today Energy, 2019, 12: 277-296. |
[11] | GHADIKOLAEI S C. Solar photovoltaic cells performance improvement by cooling technology: an overall review[J]. International Journal of Hydrogen Energy, 2021, 46(18): 10939-10972. |
[12] | ROYNE A, DEY C J, MILLS D R. Cooling of photovoltaic cells under concentrated illumination: a critical review[J]. Solar Energy Materials and Solar Cells, 2005, 86(4): 451-483. |
[13] | XU N, ZHU P, SHENG Y, et al. Synergistic tandem solar electricity-water generators[J]. Joule, 2020, 4(2): 347-358. |
[14] | WANG W, SHI Y, ZHANG C, et al. Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation[J]. Nature Communications, 2019. DOI: 10.1038/s41467-019-10817-6. |
[15] | ZHANG Y, RAVI S K, TAN S C. Food-derived carbonaceous materials for solar desalination and thermo-electric power generation[J]. Nano Energy, 2019. DOI:10.1016/j.nanoen.2019.104006. |
[16] | JI Q, LI N, WANG S, et al. Synergistic solar-powered water-electricity generation via rational integration of semitransparent photovoltaics and interfacial steam generators[J]. Journal of Materials Chemistry A, 2021, 9(37): 21197-21208. |
[17] | ZHOU Y, DING T P, GAO M M, et al. Controlled heterogeneous water distribution and evaporation towards enhanced photothermal water-electricity-hydrogen production[J]. Nano Energy, 2020. DOI:10.1016/j.nanoen.2020.105102. |
[1] | 王楠, 孙辉, 于斌, 许磊, 朱祥祥. 基于熔喷非织造材料的温度传感器制备及其传感性能[J]. 纺织学报, 2024, 45(05): 138-146. |
[2] | 陈荣轩, 孙辉, 于斌. N-TiO2/聚丙烯复合熔喷非织造材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(03): 137-147. |
[3] | 秦子轩, 张恒, 李晗, 翟倩, 甄琪, 钱晓明. 非溶相共混熔喷非织造技术的研究进展[J]. 纺织学报, 2024, 45(03): 219-226. |
[4] | 葛灿, 雍楠, 杜恒, 吴天宇, 方剑. 开放热管理式三维织物基光热海水淡化系统[J]. 纺织学报, 2024, 45(02): 153-161. |
[5] | 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188. |
[6] | 史玉磊, 曲连艺, 刘江龙, 徐英俊. 氧化锌/儿茶酚甲醛树脂微球抗菌粘胶纤维的制备及其性能[J]. 纺织学报, 2024, 45(02): 21-27. |
[7] | 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29. |
[8] | 王镕琛, 张恒, 翟倩, 刘瑞焱, 黄鹏宇, 李霞, 甄琪, 崔景强. 聚乳酸超细纤维敷料的熔喷成形工艺及其快速导液特性[J]. 纺织学报, 2024, 45(01): 30-38. |
[9] | 潘露琪, 任李培, 肖杏芳, 徐卫林, 张骞. 纤维基界面光热蒸发器表面除盐的研究进展[J]. 纺织学报, 2023, 44(11): 225-231. |
[10] | 娄辉清, 上媛媛, 曹先仲, 徐蓓蕾. 碳氮化钛/粘胶纤维束集合体太阳能界面水蒸发器的制备及其性能[J]. 纺织学报, 2023, 44(10): 9-15. |
[11] | 李璟孜, 娄蒙蒙, 黄世燕, 李方. 基于光热利用的金属有机骨架/石墨烯复合膜对印染废水的再生处理[J]. 纺织学报, 2023, 44(09): 116-123. |
[12] | 谷英姝, 朱燕龙, 汪滨, 董振峰, 谷潇夏, 杨昌兰, 崔萌, 张秀芹. 聚乳酸/驻极体熔喷非织造材料的制备及其性能[J]. 纺织学报, 2023, 44(08): 41-49. |
[13] | 蒋逸飞, 田焰宽, 戴俊, 王学利, 李发学, 俞建勇, 高婷婷. 太阳能驱动多级海水淡化器件的设计及其集水率探究[J]. 纺织学报, 2023, 44(08): 9-17. |
[14] | 何满堂, 王黎明, 覃小红, 俞建勇. 静电纺纳米纤维在界面太阳能蒸汽转化应用中的研究进展[J]. 纺织学报, 2023, 44(03): 201-209. |
[15] | 杨潇东, 于斌, 孙辉, 朱斐超, 刘鹏. 聚乙烯三氟氯乙烯熔喷非织造材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(02): 19-26. |
|