纺织学报 ›› 2024, Vol. 45 ›› Issue (07): 78-85.doi: 10.13475/j.fzxb.20230307301

• 纺织工程 • 上一篇    下一篇

基于粘胶纤维非织造材料的太阳能水电联产装置设计及其性能

鲁颖科1, 金炳奇1, 徐涛1, 高一蕾1, 邓炳耀1, 李昊轩1,2()   

  1. 1.江南大学 纺织科学与工程学院, 江苏 无锡 214122
    2.浙江省智能织物与柔性互联重点实验室, 浙江 杭州 310018
  • 收稿日期:2023-03-31 修回日期:2023-12-13 出版日期:2024-07-15 发布日期:2024-07-15
  • 通讯作者: 李昊轩(1990—),男,研究员,博士。主要研究方向为非织造材料结构调控及应用。E-mail:lihaox@jiangnan.edu.cn
  • 作者简介:鲁颖科(1999—),男,硕士生。主要研究方向为光热非织造材料制备及应用。
  • 基金资助:
    国家自然科学基金项目(52203226);浙江省智能纺织与柔性互联重点实验室开放课题项目(YB13)

Design and properties of solar water-electricity synergistic generator based on viscose nonwoven fabric

LU Yingke1, JING Bingqi1, XU Tao1, GAO Yilei1, DENG Bingyao1, LI Haoxuan1,2()   

  1. 1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Hangzhou, Zhejiang 310018, China
  • Received:2023-03-31 Revised:2023-12-13 Published:2024-07-15 Online:2024-07-15

摘要:

针对目前光驱动界面式水蒸发研究忽略低成本规模化生产和淡水产率低的问题,以粘胶纤维为原料,采用针刺非织造技术加工得到粘胶纤维非织造材料,选用光伏电池与粘胶纤维非织造材料制备水电联产装置,巧妙借助光伏电池工作时产生的废热实现界面蒸发,同时解决光伏电池在工作中产生高温导致发电效率降低的问题。研究了不同面密度的粘胶纤维非织造材料对装置蒸发速率的影响,以及该装置的水电联产性能。结果表明:粘胶纤维非织造材料运输水进行蒸发可有效降低光伏电池的温度,在1 kW/m2的光照强度下,使用面密度为160 g/m2的粘胶纤维非织造材料搭建的装置蒸发速率最佳,可达1.36 kg/(m2·h),光伏电池的光电转换效率相较于界面蒸发降温前提高0.7%;经户外实验,该水电联产装置1 d可稳定收集2.23 kg/m2的水和37.3 kW·h/m2的电,且收集的淡水达到世界卫生组织饮用水标准,初步验证了利用传统非织造材料和光伏发电结合实现水电联产和规模化应用的潜在可能。

关键词: 界面蒸发, 光伏发电, 非织造材料, 粘胶纤维, 海水淡化, 水电联产装置

Abstract:

Objective Interfacial solar steam generation (ISSG) has emerged as a promising eco-friendly and low-carbon emission technology to address the global water scarcity. However, most current studies have focused too much on evaporation materials, ignoring the real bottlenecks are in the low-cost, scalable production and low fresh water yield in seawater desalination. In order to solve the above problems, this paper proposes a novel strategy to construct a water-electricity synergistic generator (WESG) by combining interfacial evaporation technology with photovoltaic generation.

Method The WESG containing a solar cell, thermoelectric generator, viscose fiber based nonwoven fabric and a copper condenser from top to bottom. The device skillfully uses the waste heat generated during the work of photovoltaic cells to facilitate interface evaporation, and solves the problem of low power generation efficiency caused by high temperature generated during the operation of the photovoltaic cells. The structure and wicking effect of the viscose fiber based nonwoven fabric, evaporation and electricity performance of the WESG was characterized.

Results The viscose nonwoven fabric is twisted, staggered, and interconnected to form a porous structure, resulting in good air permeability. The water droplets on the surface of viscose nonwovens fabric completely is diffused within 0.2 s, indicating that the water quickly reaches the gas-liquid interface and continuously supplies water to the evaporation interface. Assisted with evaporation process, the temperature of the photovoltaic cell is decreased from 62 ℃ to 48 ℃ under the simulated irradiation of 1 kW/m2, and the evaporation rate reaches 1.36 kg/(m2·h). According to the voltammetry characteristic curve of the photovoltaic cell, the photovoltaic conversion efficiency is increased from 8.8% to 9.6% after cooling. The results show that the combination of photovoltaic power generation and interfacial water evaporation technology can effectively reduce the working temperature of photovoltaic cells and improve the photoelectric conversion efficiency of photovoltaic cells. The thermoelectric generator sheet can release 84 mV voltage, and the maximum power density is 28.12 μW/cm2during evaporation. The outdoor performance experiment of the WESG is able to generate 2.23 kg/m2 of water and 37.3 (kW·h) /m2electricity in one day. The photoelectricity conversion efficiency and solar to vapor conversion efficiency are maintained at 9.5% and 82%, respectively during 144 h of cycle operation, suggesting that the excellent working stability of WESG. After purification, the ion concentration of salt water is decreased by 2-4 orders of magnitude, reaching the drinking water standards of the World Health Organization and the United States Environmental Protection Agency, implying that the WESG has a good water purification effect.

Conclusion In summary, this work provides a WESG with minimized energy loss and passive cooling condensation. The WESG cleverly uses the waste heat generated during the work of photovoltaic cells to realize interface evaporation, and solves the problem of low power generation efficiency caused by high temperature generated during the operation of the photovoltaic cells. The results show that the evaporation of water transported by viscose nonwoven fabric can effectively decrease the temperature of photovoltaic cells, and improve the photoelectric conversion efficiency of photovoltaic cells. This paper preliminary verifies the potential of utilizing traditional nonwoven materials and photovoltaic power generation to realize water-electricity synergistic generation and large-scale application.

Key words: interfacial steam generation, photovoltaic power, nonwoven material, viscose, desalination, synergistic water-electricity generation.

中图分类号: 

  • TK519

图1

太阳能水电联产装置工作原理图"

图2

粘胶纤维非织造材料的扫描电镜照片和孔径分布"

图3

粘胶纤维非织造材料的亲水性能"

图4

太阳能水电联产装置的蒸发性能"

图5

太阳能水电联产装置的发电性能"

图6

太阳能水电联产装置户外性能"

表1

水电联产装置性能对比"

光热材料 水运输材料 发电模块 蒸发速率/
(kg·m-2·h-1)
发电量/
(W·h·m-2)
参考文献
透明晶体硅光伏电池 还原氧化石墨烯织物 透明晶体硅光伏电池 0.80 204.0 [13]
多晶硅光伏电池 亲水石英玻璃纤维膜 多晶硅光伏电池 1.88 115.0 [14]
生物炭材料 滤纸 温差发电片 1.26 0.4 [15]
半透明光伏电池,聚吡咯 负载聚吡咯的纤维膜 半透明光伏电池 1.30 122.0 [16]
碳纳米管 聚丙烯胺/碳纳米管水凝胶 温差发电片 1.42 4.8 [17]
多晶硅光伏电池 粘胶纤维非织造材料 多晶硅光伏电池及温差发电片 1.36 95.8 本文

图7

太阳能水电联产装置6 d的循环工作效率"

图8

太阳能水电联产装置脱盐性能 注:横线为世界卫生组织及美国环境保护署所规定的符合饮用水标准的离子质量浓度上限。"

[1] WU X, CHEN G, OWENS G, et al. Photothermal materials: a key platform enabling highly efficient water evaporation driven by solar energy[J]. Materials Today Energy, 2019, 12: 277-296.
[2] XU W, HU X, ZHUANG S, et al. Flexible and salt resistant janus absorbers by electrospinning for stable and efficient solar desalination[J]. Advanced Energy Materials, 2018. DOI:10.1002/aenm.201702884.
[3] 丁倩, 邓炳耀, 李昊轩. 全纤维光驱动界面蒸发系统在海水淡化工程中的应用研究进展[J]. 纺织学报2022, 43(1):36-42.
DING Qian, DENG Bingyao, LI Haoxuan. Research progress in all-fiber solar induced interface evaporation system to assist desalination with zero carbon emission[J]. Journal of Textile Research, 2022, 43(1):36-42.
[4] ITO Y, TANABE Y, HAN J, et al. Multifunctional porous graphene for high-efficiency steam generation by heat localization[J]. Advanced Materials, 2015, 27(29): 4302-4307.
[5] 李政通, 王成兵. 多尺度Ag/CuO复合光热材料的制备及在海水淡化中的应用[J]. 无机化学报, 2020, 36(8): 1457-1464.
LI Zhengtong, WANG Chengbing. Multi-scale Ag/CuO photothermal materials: preparation and application in seawater desalination[J]. Chinese Journal of Inorganic Chemistry, 2020, 36(8): 1457-1464.
[6] LI H, YAN Z, LI Y, et al. Latest development in salt removal from solar-driven interfacial saline water evaporators: advanced strategies and challenges[J]. Water Research, 2020. DOI: 10.1016/j.watres.2020.115770.
[7] GAO M, ZHU L, PEH C K, et al. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy produc-tion[J]. Energy & Environmental Science, 2019, 12(3): 841-864.
[8] LI H, WEN H, ZHANG Z, et al. Reverse thinking of the aggregation-induced emission principle: amplifying molecular motions to boost photothermal efficiency of nanofibers[J]. Angewandte Chemie International Edition, 2020, 59(46): 20371-20375.
[9] SHARAF M, YOUSEF M S, HUZAYYIN A S. Review of cooling techniques used to enhance the efficiency of photovoltaic power systems[J]. Environmental Science and Pollution Research, 2022, 29(18): 26131-26159.
[10] WU X, CHEN G, OWENS G, et al. Photothermal mate rials: a key platform enabling highly efficient water evaporation driven by solar energy[J]. Materials Today Energy, 2019, 12: 277-296.
[11] GHADIKOLAEI S C. Solar photovoltaic cells performance improvement by cooling technology: an overall review[J]. International Journal of Hydrogen Energy, 2021, 46(18): 10939-10972.
[12] ROYNE A, DEY C J, MILLS D R. Cooling of photovoltaic cells under concentrated illumination: a critical review[J]. Solar Energy Materials and Solar Cells, 2005, 86(4): 451-483.
[13] XU N, ZHU P, SHENG Y, et al. Synergistic tandem solar electricity-water generators[J]. Joule, 2020, 4(2): 347-358.
[14] WANG W, SHI Y, ZHANG C, et al. Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation[J]. Nature Communications, 2019. DOI: 10.1038/s41467-019-10817-6.
[15] ZHANG Y, RAVI S K, TAN S C. Food-derived carbonaceous materials for solar desalination and thermo-electric power generation[J]. Nano Energy, 2019. DOI:10.1016/j.nanoen.2019.104006.
[16] JI Q, LI N, WANG S, et al. Synergistic solar-powered water-electricity generation via rational integration of semitransparent photovoltaics and interfacial steam generators[J]. Journal of Materials Chemistry A, 2021, 9(37): 21197-21208.
[17] ZHOU Y, DING T P, GAO M M, et al. Controlled heterogeneous water distribution and evaporation towards enhanced photothermal water-electricity-hydrogen production[J]. Nano Energy, 2020. DOI:10.1016/j.nanoen.2020.105102.
[1] 王楠, 孙辉, 于斌, 许磊, 朱祥祥. 基于熔喷非织造材料的温度传感器制备及其传感性能[J]. 纺织学报, 2024, 45(05): 138-146.
[2] 陈荣轩, 孙辉, 于斌. N-TiO2/聚丙烯复合熔喷非织造材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(03): 137-147.
[3] 秦子轩, 张恒, 李晗, 翟倩, 甄琪, 钱晓明. 非溶相共混熔喷非织造技术的研究进展[J]. 纺织学报, 2024, 45(03): 219-226.
[4] 葛灿, 雍楠, 杜恒, 吴天宇, 方剑. 开放热管理式三维织物基光热海水淡化系统[J]. 纺织学报, 2024, 45(02): 153-161.
[5] 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188.
[6] 史玉磊, 曲连艺, 刘江龙, 徐英俊. 氧化锌/儿茶酚甲醛树脂微球抗菌粘胶纤维的制备及其性能[J]. 纺织学报, 2024, 45(02): 21-27.
[7] 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29.
[8] 王镕琛, 张恒, 翟倩, 刘瑞焱, 黄鹏宇, 李霞, 甄琪, 崔景强. 聚乳酸超细纤维敷料的熔喷成形工艺及其快速导液特性[J]. 纺织学报, 2024, 45(01): 30-38.
[9] 潘露琪, 任李培, 肖杏芳, 徐卫林, 张骞. 纤维基界面光热蒸发器表面除盐的研究进展[J]. 纺织学报, 2023, 44(11): 225-231.
[10] 娄辉清, 上媛媛, 曹先仲, 徐蓓蕾. 碳氮化钛/粘胶纤维束集合体太阳能界面水蒸发器的制备及其性能[J]. 纺织学报, 2023, 44(10): 9-15.
[11] 李璟孜, 娄蒙蒙, 黄世燕, 李方. 基于光热利用的金属有机骨架/石墨烯复合膜对印染废水的再生处理[J]. 纺织学报, 2023, 44(09): 116-123.
[12] 谷英姝, 朱燕龙, 汪滨, 董振峰, 谷潇夏, 杨昌兰, 崔萌, 张秀芹. 聚乳酸/驻极体熔喷非织造材料的制备及其性能[J]. 纺织学报, 2023, 44(08): 41-49.
[13] 蒋逸飞, 田焰宽, 戴俊, 王学利, 李发学, 俞建勇, 高婷婷. 太阳能驱动多级海水淡化器件的设计及其集水率探究[J]. 纺织学报, 2023, 44(08): 9-17.
[14] 何满堂, 王黎明, 覃小红, 俞建勇. 静电纺纳米纤维在界面太阳能蒸汽转化应用中的研究进展[J]. 纺织学报, 2023, 44(03): 201-209.
[15] 杨潇东, 于斌, 孙辉, 朱斐超, 刘鹏. 聚乙烯三氟氯乙烯熔喷非织造材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(02): 19-26.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!