纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 169-179.doi: 10.13475/j.fzxb.20230307401

• 染整工程 • 上一篇    下一篇

锑污染物对绿藻及蓝藻的急性毒性效应

李方1,2, 张怡立1, 王曼1, 孟祥周2,3, 沈忱思1,2()   

  1. 1.东华大学 环境科学与工程学院, 上海 201620
    2.上海污染控制与生态安全研究院,上海 200092
    3.同济大学 环境科学与工程学院, 上海 200092
  • 收稿日期:2023-03-31 修回日期:2024-01-11 出版日期:2024-04-15 发布日期:2024-05-13
  • 通讯作者: 沈忱思(1985—),女,副教授,博士。主要研究方向为水污染控制化学。E-mail:shencs@dhu.edu.cn。
  • 作者简介:李方(1979—),教授,博士。主要研究方向为水污染控制。
  • 基金资助:
    上海市自然科学基金项目(21ZR1401500);东华大学中央高校基金理工基地项目(2232022G-11/2232023G-11)

Acute toxic effects of antimony contaminants on green algae and cyanobacteria

LI Fang1,2, ZHANG Yili1, WANG Man1, MENG Xiangzhou2,3, SHEN Chensi1,2()   

  1. 1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
    2. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
    3. College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
  • Received:2023-03-31 Revised:2024-01-11 Published:2024-04-15 Online:2024-05-13

摘要:

为深入了解不同价态锑的水生生态毒性及其影响因素,选用2种绿藻(羊角月牙藻、莱茵衣藻)和2种蓝藻(聚球藻、水华鱼腥藻)作为模式生物,通过测定藻细胞抑制率、叶绿素a、抗氧化酶及观察细胞微观结构,对锑(Ⅲ)和锑(Ⅴ)进行毒性影响研究。结果表明:在2 mg/L锑(Ⅲ)或锑(V)暴露72 h后,锑(Ⅲ)对微藻的抑制率最高达76.6%,而锑(Ⅴ)对微藻的最高抑制率仅为41.0%,且绿藻较蓝藻受锑胁迫更为敏感;微藻的叶绿素a合成及可溶性蛋白含量变化表现出与生长抑制类似的响应规律,相较之下蓝藻的叶绿素a合成受到的影响较绿藻小;绿藻的超氧化物歧化酶和过氧化氢酶活性变化规律呈现出低浓度促进高浓度抑制的现象,而蓝藻则不具备统一的变化规律;从亚细胞结构来看,莱茵衣藻的细胞壁、细胞核、叶绿体及其它细胞器均受到了损伤,而聚球藻主要是光合系统受损。

关键词: 锑污染, 蓝藻, 绿藻, 毒性效应, 废水处理

Abstract:

Objective Antimony (Sb) is utilized as a catalyst during the polymerization process of polyethylene terephthalate (PET) and it remains in PET fibers or textiles. When printing and dyeing PET, Sb will leach into wastewater and cause contamination, and it commonly exists in aquatic environments in two oxidation states: +3 and +5. Investigating their toxicological effects on aquatic ecosystems is highly necessary. Microalgae are the primary producers in aquatic ecosystems, and their short growth cycle and ease of isolation make them highly suitable for studying the toxic effects of Sb pollutants on aquatic ecosystems.

Method Representatives of green algae, Raphidocelis subcapitata and Chlamydomonas reinhardtii, and representatives of cyanobacteria, Synechococcus and Dolichospermum sp., were selected for investigation. The growth status of the microalgae was evaluated by measuring algal cell concentration, chlorophyll a, and soluble protein. The potential oxidative stress caused by exposure to Sb(Ⅲ) and Sb(V) was assessed by measuring the activities of superoxide dismutase (SOD) and catalase (CAT). The potential damage to microalgal was determined through subcellular structure observation by TEM. Additionally, the adsorption or absorption of Sb(Ⅲ) and Sb(V) by microalgae were quantified to determine the extent of adsorption relative to their growth status.

Results The results revealed that under different concentrations of Sb(Ⅲ) and Sb(V) stress for 72 h, Hormesis effect was observed in four algae species, i.e. Raphidocelis subcapitata, Chlamydomonas reinhardtii, Synechococcus, Dolichospermum sp. Sb(Ⅲ) had a more potent inhibitory effect on microalgae, with up to a 76.6% reduction in growth, compared to Sb(V) which only resulted in a 41.0% decrease. Green algae were found to be more vulnerable to Sb-induced stress compared to cyanobacteria. The toxic impact of Sb on microalgae was primarily attributed to the impairment of their photosynthetic machinery and the occurrence of oxidative damage. Alterations in the synthesis of chlorophyll a and soluble protein content in microalgae indicated similar trends in response to growth inhibition, but the impact on cyanobacteria was less pronounced. Additionally, the activities of SOD and CAT in green algae exhibited a pattern of promotion at low concentrations and inhibition at high concentrations, while cyanobacteria showed a variable pattern of changes. Subcellular examination of microalgae revealed that Chlamydomonas reinhardtii experienced damage to the cell wall, nucleus, chloroplasts, and other organelles, whereas Synechococcus suffered damage mainly to the photosynthetic system. Further, all four microalgae had greater sorption and uptake of Sb(Ⅲ) than Sb(V), but there was no clear correlation between the uptake or sorption of antimony by microalgae and their tolerance to antimony stress.

Conclusion Antimony contamination has become an increasing concern, and it is essential to comprehend the toxicity and toxic mechanisms of Sb of different valence. This study found that the toxicity of Sb(Ⅲ) to microalgae is significantly higher than that of Sb(V), and that green algae are more sensitive to Sb stress than blue algae. When the exposure concentration of Sb(Ⅲ) is below 0.05 mg/L and the exposure concentration of Sb(V) is below 0.2 mg/L, the toxicity impact on microalgae is relatively small. The mechanisms by which Sb affects microalgae are primarily associated with harm to the photosynthetic system and oxidative stress. Under Sb(Ⅲ) stress, the cell wall, nucleus, chloroplasts, and other organelles of green algae are damaged, while in blue-green algae, the photosynthetic system is primarily affected. The above research results are expected to provide certain basis for a comprehensive assessment of the ecological risks of Sb pollutants.

Key words: Sb pollution, cyanobacteria, green algae, toxic effect, wastewater treatment

中图分类号: 

  • X173

图1

Sb(Ⅲ)对不同微藻的生长抑制率"

图2

Sb(Ⅴ)对不同微藻的生长抑制率"

图3

Sb(Ⅲ)及Sb(Ⅴ)对不同微藻叶绿素a含量的影响 注:相邻柱条上不同字母表示有显著性差异 (P<0.05),相同字母表示无显著性差异。"

图4

Sb(Ⅲ)与Sb(Ⅴ)对不同微藻可溶性蛋白含量的影响 注:相邻柱条上不同字母表示有显著性差异(P<0.05),相同字母表示无显著性差异。"

图5

Sb(Ⅲ)及Sb(Ⅴ)对微藻SOD活性的影响 注:相邻柱条上不同字母表示有显著性差异(P<0.05),相同字母表示无显著性差异"

图6

Sb(Ⅲ)与Sb(Ⅴ)对微藻CAT活性的影响 注:相邻柱条上不同字母表示有显著性差异(P<0.05),相同字母表示无显著性差异。"

图7

莱茵衣藻和聚球藻的TEM照片"

表1

72 h 4种微藻对Sb(Ⅲ)与Sb(Ⅴ)的去除率"

Sb质量浓度/
(mg·L-1)
Sb(Ⅲ)去除率/% Sb(V)去除率/%
羊角月牙藻 莱茵衣藻 聚球藻 水华鱼腥藻 羊角月牙藻 莱茵衣藻 聚球藻 水华鱼腥藻
0.02 25.2±1.9 73.4±0.9 24.9±1.6 20.1±0.9 57.7±3.0 49.3±0.8 65.1±2.5 58.0±2.0
0.05 44.7±1.3 66.5±0.8 37.2±1.5 34.1±1.4 48.3±2.6 57.4±1.6 58.8±2.3 52.6±1.0
0.1 60.2±1.8 52.8±1.2 39.1±1.4 33.9±1.6 41.1±0.9 51.7±1.0 49.4±2.1 57.7±1.9
0.2 62.5±2.5 30.2±0.8 45.5±2.7 47.9±2.1 33.3±2.4 40.0±0.5 30.6±1.5 59.2±1.2
0.5 68.7±2.3 26.3±1.2 35.5±2.1 52.8±2.2 36.7±4.0 40.3±1.1 25.3±2.7 49.0±1.8
1 73.2±1.8 19.3±1.1 30.6±2.4 48.9±1.8 39.8±2.2 31.3±0.7 23.9±2.8 20.5±1.5
2 76.7±3.7 10.2±0.8 32.4±3.1 52.4±0.8 38.9±3.9 30.8±1.2 21.0±1.6 19.0±1.8
[1] 章耀鹏, 沈忱思, 徐晨烨, 等. 纺织工业典型污染物治理技术回顾[J]. 纺织学报, 2021, 2(8): 24-33.
ZHANG Yaopeng, SHEN Chensi, XU Chenye, et al. Review on treatment technology for typical pollutants in textile industry[J]. Journal of Textile Research, 2021, 42(8): 24-33.
[2] 狄惠琴, 张沂頔, 王洪涛. 化纤纺织染整废水中锑污染控制策略[J]. 工业水处理, 2021, 41(12): 22-28.
doi: 10.19965/j.cnki.iwt.2020-1014
DI Huiqin, ZHANG Yidi, WANG Hongtao. Strategies on antimony pollution control in the chemical fiber textile dyeing and finishing wastewater[J]. Industrial Water Treatment, 2021, 41(12): 22-28.
doi: 10.19965/j.cnki.iwt.2020-1014
[3] 李方. 纺织工业排污许可证管理与污染防治技术[M]. 北京: 中国环境科学出版社, 2020: 46.
LI Fang. Emission permit management and pollution prevention technology for the textile industry[M]. Beijing: China Environmental Science Press, 2020: 46.
[4] 董冲冲. 涤纶生命周期中重金属锑的来源解析及检测[D]. 上海: 东华大学,2016: 14.
DONG Chongchong. Source analysis and detection of heavy matals antimony in the life cycle of polyester[D]. Shanghai: Donghua University, 2016: 14.
[5] 李航彬, 杨志辉, 袁平夫, 等. 湘中锑矿区土壤重金属锑的污染特征[J]. 环境科学与技术, 2011, 34(1): 70-74.
LI Hangbin, YANG Zhihui, YUAN Pingfu, et al. Characteristics of antimony pollution in soils at mining areas in central Hunan Province[J]. Environmental Science & Technology, 2011, 34(1): 70-74.
[6] UNGUREANU G, SANTOS S, BOAVENTURA R, et al. Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption[J]. Journal of Environmental Management, 2015, 151(15): 326-342.
[7] 任杰, 刘晓文, 李杰, 等. 我国锑的暴露现状及其环境化学行为分析[J]. 环境化学, 2020, 39(12): 3436-3449.
REN Jie, LIU Xiaowen, LI Jie, et al. Analysis of exposure status quo and environmental chemical behaviors of antimony in China[J]. Environmental Chemistry, 2020, 39(12): 3436-3449.
[8] 沈忱思, 刘志保, 章耀鹏, 等. 纺织印染行业锑排放特征与治理技术[J]. 西安工程大学学报, 2022, 36(3): 9-19.
SHEN Chensi, LIU Zhibao, ZHANG Yaopeng, et al. Characteristics and control technologies of antimony discharge in textile printing and dyeing industry[J]. Journal of Xi'an Polytechnic University, 2022, 36(3): 9-19.
[9] ALHO L, SOUZA J, ROCHA G S, et al. Photosynthetic, morphological and biochemical biomarkers as tools to investigate copper oxide nanoparticle toxicity to a freshwater chlorophyceae[J]. Environmental Pollution, 2020. DOI: 10.1016/j.envpol.2020.114856.
[10] 何孟常, 万红艳. 环境中锑的分布、存在形态及毒性和生物有效性[J]. 化学进展, 2004(1): 131-135.
HE Mengchang, WAN Hongyan. Distribution, speciation, toxicity and bioavailability of antimony in the environment.[J]. Progress in Chemistry, 2004(1): 131-135.
[11] 冯人伟, 韦朝阳, 涂书新. 植物对锑的吸收和代谢及其毒性的研究进展[J]. 植物学报, 2012, 47(3): 302-308.
doi: 10.3724/SP.J.1259.2012.00302
FENG Renwei, WEI Chaoyang, TU Shuxin. Research advances in uptake, metabolism and toxicity of antimony in plants[J]. Chinese Bulletin of Botany, 2012, 47(3): 302-308.
[12] MARKIEWICZ M, MROZIK W, REZWAN K, et al. Changes in zeta potential of imidazolium ionic liquids modified minerals: implications for determining mechanism of adsorption[J]. Chemosphere, 2013, 90(2): 706-712.
[13] ARNON D. Copper enzymes in isolated chloroplasts.Polyphenoloxidases in Beta vulgaris[J]. Plant Physiol, 1949, 24(1): 1-15.
[14] GEORGIOU C D, GRINTZALIS K, ZERVOUDAKIS G, et al. Mechanism of coomassie brilliant blue G-250 binding to proteins: a hydrophobic assay for nanogram quantities of proteins[J]. Analytical & Bioanalytical Chemistry, 2008, 391(1): 391-403.
[15] CAI Y, MU W J, JIA K, et al. Effects of three nanomaterials on growth, photosynthetic characteristics and production of reactive oxygen species of diatom Nitzschia Palea[J]. Chemistry and Ecology, 2022, 38(2): 145-161.
[16] GARRIDO I, ORTEGA A, HERNÁNDEZ M, et al. Effect of antimony in soils of an Sb mine on the photosynthetic pigments and antioxidant system of Dittrichia viscosa leaves[J]. Environmental Geochemistry and Health, 2021, 43(4): 1367-1383.
[17] LI D, HE T, SALEEM M, et al. Metalloprotein-specific or critical amino acid residues: perspectives on plant-precise detoxification and recognition mechanisms under cadmium stress[J]. International Journal of Molecular Sciences, 2022, 23: 1734-1754.
[18] LI N, QIN L, JIN M, et al. Extracellular adsorption, intracellular accumulation and tolerance mechanisms of Cyclotella sp. to Cr(VI) stress[J]. Chemosphere, 2021. DOI: 10.1016/j.chemosphere.2020.128662.
[19] REZAYIAN M, NIKNAM V, EBRAHIMZADEH H. Oxidative damage and antioxidative system in algae[J]. Toxicology Reports, 2019(6): 1309-1313.
[20] 孔祥雪, 李宝珍, 杨金水. 微藻去除重金属镉的抗性机理研究进展[J]. 微生物学通报, 2017, 44(8): 1980-1987.
KONG Xiangxue, LI Baozhen, YANG Jinshui. Research progress in microalgae resistance to cadmium stress[J]. Microbiology China, 2017, 44(8): 1980-1987.
[21] WANG C, WANG X, WANG P, et al. Effects of iron on growth, antioxidant enzyme activity, bound extracellular polymeric substances and microcystin production of Microcystis aeruginosa FACHB-905[J]. Ecotoxicology & Environmental Safety, 2016, 132: 231-239.
[22] 王静. 铜绿微囊藻中砷的代谢与生物效应[D]. 天津: 天津大学,2012: 36-37.
WANG Jing. Metabolism and biological effects of arsenic in Microcystis aeruginosa[D]. Tianjin: Tianjin University, 2012: 36-37.
[23] 吴健. 不同结构类型离子液体对蛋白核小球藻的毒性研究[D]. 杭州: 浙江工商大学,2018: 48.
WU Jian. Toxicity of ionic liquid with different structure on Chlorella pyrenoidosa[D]. Hangzhou: Zhejiang Gongshang University, 2018: 48.
[24] HAI Y, GANG P. Toxicity and bioaccumulation of copper in three green microalgal species[J]. Chemosphere, 2002, 49(5): 471-476.
pmid: 12363319
[25] HUANG W J, WU C C, CHANG W C, et al. Bioaccumulation and toxicity of arsenic in cyanobacteria cultures separated from a eutrophic reservoir[J]. Environmental Monitoring & Assessment, 2014(186): 805-814.
[26] LI S, YU Y, GAO X, et al. Evaluation of growth and biochemical responses of freshwater microalgae Chlorella vulgaris due to exposure and uptake of sulfonamides and copper[J]. Bioresource Technology, 2021. DOI: 10.1016/j.biortech.2021.126064.
[27] 黄飞. 蛋白核小球藻对无机砷的吸附吸收及作用机制[D]. 杭州: 浙江大学,2018: 3.
HUANG Fei. The adsorption and uptake of inorganic arsenic by Chlorella pyrenoidosa and the interaction mechanism[D]. Hangzhou: Zhejiang University, 2018: 3.
[28] 孟丽娜, 彭春莹, 李铁栋, 等. 基于蛋白质组学对螺旋藻砷胁迫响应机制的研究[J]. 生物技术通报, 2020, 36(4): 107-116.
MENG Lina, PENG Chunying, LI Tiedong, et al. Proteomic analysis of Spirulina platensis in response to arsenic stresss[J]. Biotechnology Bulletin, 2020, 36(4): 107-116.
[29] MISHRA S, STARK H J, KUPPER H. A different sequence of events than previously reported leads to arsenic-induced damage in Ceratophyllum demersum L[J]. Metallomics, 2014, 6(3): 444-454.
[1] 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75.
[2] 陈荣轩, 孙辉, 于斌. N-TiO2/聚丙烯复合熔喷非织造材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(03): 137-147.
[3] 李红颖, 徐毅, 杨帆, 任瑞鹏, 周全, 吴丽杰, 吕永康. 三维乒乓菊状CdS/BiOBr催化剂的制备及其光催化降解罗丹明B[J]. 纺织学报, 2023, 44(09): 124-133.
[4] 韩博, 王玉霖, 舒大武, 王涛, 安芳芳, 单巨川. 活性染料染色废水的循环染色[J]. 纺织学报, 2023, 44(08): 151-157.
[5] 王国琴, 付小航, 朱羽科, 吴礼光, 王挺, 蒋孝佳, 陈华丽. 可见光响应的介孔TiO2光降解罗丹明B机制及其降解途径[J]. 纺织学报, 2023, 44(05): 155-163.
[6] 郑琳娟, 郁佳, 尹冲, 梁志结, 毛庆辉. 多酸基金属-有机框架负载棉织物的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 106-111.
[7] 周小桔, 胡正龙, 任一鸣, 谢兰东. Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 97-105.
[8] 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155.
[9] 王静, 娄娅娅, 王春梅. 铁基金属–有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(08): 126-131.
[10] 张雅宁, 张辉, 宋悦悦, 李文明, 李雯君, 姚佳乐. 废弃口罩基ZIF-8/Ag/TiO2复合材料的制备及其光催化降解染料性能[J]. 纺织学报, 2022, 43(07): 111-120.
[11] 高陆玺, 吕雪川, 张弛, 宋翰林, 高肖汉. 用于印染废水处理的改性絮凝剂合成及其脱色性能[J]. 纺织学报, 2022, 43(07): 121-128.
[12] 钱佳琪, 瞿建刚, 胡啸林, 毛庆辉. 还原氧化石墨烯/粘胶基钒酸铋光催化材料的制备及其性能[J]. 纺织学报, 2022, 43(06): 100-106.
[13] 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123.
[14] 邓杨, 石现兵, 王涛, 刘利伟, 韩振邦. 负载MIL-53(Fe)的改性聚丙烯腈纤维光催化剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 58-63.
[15] 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53-60.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!