纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 169-179.doi: 10.13475/j.fzxb.20230307401
李方1,2, 张怡立1, 王曼1, 孟祥周2,3, 沈忱思1,2()
LI Fang1,2, ZHANG Yili1, WANG Man1, MENG Xiangzhou2,3, SHEN Chensi1,2()
摘要:
为深入了解不同价态锑的水生生态毒性及其影响因素,选用2种绿藻(羊角月牙藻、莱茵衣藻)和2种蓝藻(聚球藻、水华鱼腥藻)作为模式生物,通过测定藻细胞抑制率、叶绿素a、抗氧化酶及观察细胞微观结构,对锑(Ⅲ)和锑(Ⅴ)进行毒性影响研究。结果表明:在2 mg/L锑(Ⅲ)或锑(V)暴露72 h后,锑(Ⅲ)对微藻的抑制率最高达76.6%,而锑(Ⅴ)对微藻的最高抑制率仅为41.0%,且绿藻较蓝藻受锑胁迫更为敏感;微藻的叶绿素a合成及可溶性蛋白含量变化表现出与生长抑制类似的响应规律,相较之下蓝藻的叶绿素a合成受到的影响较绿藻小;绿藻的超氧化物歧化酶和过氧化氢酶活性变化规律呈现出低浓度促进高浓度抑制的现象,而蓝藻则不具备统一的变化规律;从亚细胞结构来看,莱茵衣藻的细胞壁、细胞核、叶绿体及其它细胞器均受到了损伤,而聚球藻主要是光合系统受损。
中图分类号:
[1] | 章耀鹏, 沈忱思, 徐晨烨, 等. 纺织工业典型污染物治理技术回顾[J]. 纺织学报, 2021, 2(8): 24-33. |
ZHANG Yaopeng, SHEN Chensi, XU Chenye, et al. Review on treatment technology for typical pollutants in textile industry[J]. Journal of Textile Research, 2021, 42(8): 24-33. | |
[2] |
狄惠琴, 张沂頔, 王洪涛. 化纤纺织染整废水中锑污染控制策略[J]. 工业水处理, 2021, 41(12): 22-28.
doi: 10.19965/j.cnki.iwt.2020-1014 |
DI Huiqin, ZHANG Yidi, WANG Hongtao. Strategies on antimony pollution control in the chemical fiber textile dyeing and finishing wastewater[J]. Industrial Water Treatment, 2021, 41(12): 22-28.
doi: 10.19965/j.cnki.iwt.2020-1014 |
|
[3] | 李方. 纺织工业排污许可证管理与污染防治技术[M]. 北京: 中国环境科学出版社, 2020: 46. |
LI Fang. Emission permit management and pollution prevention technology for the textile industry[M]. Beijing: China Environmental Science Press, 2020: 46. | |
[4] | 董冲冲. 涤纶生命周期中重金属锑的来源解析及检测[D]. 上海: 东华大学,2016: 14. |
DONG Chongchong. Source analysis and detection of heavy matals antimony in the life cycle of polyester[D]. Shanghai: Donghua University, 2016: 14. | |
[5] | 李航彬, 杨志辉, 袁平夫, 等. 湘中锑矿区土壤重金属锑的污染特征[J]. 环境科学与技术, 2011, 34(1): 70-74. |
LI Hangbin, YANG Zhihui, YUAN Pingfu, et al. Characteristics of antimony pollution in soils at mining areas in central Hunan Province[J]. Environmental Science & Technology, 2011, 34(1): 70-74. | |
[6] | UNGUREANU G, SANTOS S, BOAVENTURA R, et al. Arsenic and antimony in water and wastewater: overview of removal techniques with special reference to latest advances in adsorption[J]. Journal of Environmental Management, 2015, 151(15): 326-342. |
[7] | 任杰, 刘晓文, 李杰, 等. 我国锑的暴露现状及其环境化学行为分析[J]. 环境化学, 2020, 39(12): 3436-3449. |
REN Jie, LIU Xiaowen, LI Jie, et al. Analysis of exposure status quo and environmental chemical behaviors of antimony in China[J]. Environmental Chemistry, 2020, 39(12): 3436-3449. | |
[8] | 沈忱思, 刘志保, 章耀鹏, 等. 纺织印染行业锑排放特征与治理技术[J]. 西安工程大学学报, 2022, 36(3): 9-19. |
SHEN Chensi, LIU Zhibao, ZHANG Yaopeng, et al. Characteristics and control technologies of antimony discharge in textile printing and dyeing industry[J]. Journal of Xi'an Polytechnic University, 2022, 36(3): 9-19. | |
[9] | ALHO L, SOUZA J, ROCHA G S, et al. Photosynthetic, morphological and biochemical biomarkers as tools to investigate copper oxide nanoparticle toxicity to a freshwater chlorophyceae[J]. Environmental Pollution, 2020. DOI: 10.1016/j.envpol.2020.114856. |
[10] | 何孟常, 万红艳. 环境中锑的分布、存在形态及毒性和生物有效性[J]. 化学进展, 2004(1): 131-135. |
HE Mengchang, WAN Hongyan. Distribution, speciation, toxicity and bioavailability of antimony in the environment.[J]. Progress in Chemistry, 2004(1): 131-135. | |
[11] |
冯人伟, 韦朝阳, 涂书新. 植物对锑的吸收和代谢及其毒性的研究进展[J]. 植物学报, 2012, 47(3): 302-308.
doi: 10.3724/SP.J.1259.2012.00302 |
FENG Renwei, WEI Chaoyang, TU Shuxin. Research advances in uptake, metabolism and toxicity of antimony in plants[J]. Chinese Bulletin of Botany, 2012, 47(3): 302-308. | |
[12] | MARKIEWICZ M, MROZIK W, REZWAN K, et al. Changes in zeta potential of imidazolium ionic liquids modified minerals: implications for determining mechanism of adsorption[J]. Chemosphere, 2013, 90(2): 706-712. |
[13] | ARNON D. Copper enzymes in isolated chloroplasts.Polyphenoloxidases in Beta vulgaris[J]. Plant Physiol, 1949, 24(1): 1-15. |
[14] | GEORGIOU C D, GRINTZALIS K, ZERVOUDAKIS G, et al. Mechanism of coomassie brilliant blue G-250 binding to proteins: a hydrophobic assay for nanogram quantities of proteins[J]. Analytical & Bioanalytical Chemistry, 2008, 391(1): 391-403. |
[15] | CAI Y, MU W J, JIA K, et al. Effects of three nanomaterials on growth, photosynthetic characteristics and production of reactive oxygen species of diatom Nitzschia Palea[J]. Chemistry and Ecology, 2022, 38(2): 145-161. |
[16] | GARRIDO I, ORTEGA A, HERNÁNDEZ M, et al. Effect of antimony in soils of an Sb mine on the photosynthetic pigments and antioxidant system of Dittrichia viscosa leaves[J]. Environmental Geochemistry and Health, 2021, 43(4): 1367-1383. |
[17] | LI D, HE T, SALEEM M, et al. Metalloprotein-specific or critical amino acid residues: perspectives on plant-precise detoxification and recognition mechanisms under cadmium stress[J]. International Journal of Molecular Sciences, 2022, 23: 1734-1754. |
[18] | LI N, QIN L, JIN M, et al. Extracellular adsorption, intracellular accumulation and tolerance mechanisms of Cyclotella sp. to Cr(VI) stress[J]. Chemosphere, 2021. DOI: 10.1016/j.chemosphere.2020.128662. |
[19] | REZAYIAN M, NIKNAM V, EBRAHIMZADEH H. Oxidative damage and antioxidative system in algae[J]. Toxicology Reports, 2019(6): 1309-1313. |
[20] | 孔祥雪, 李宝珍, 杨金水. 微藻去除重金属镉的抗性机理研究进展[J]. 微生物学通报, 2017, 44(8): 1980-1987. |
KONG Xiangxue, LI Baozhen, YANG Jinshui. Research progress in microalgae resistance to cadmium stress[J]. Microbiology China, 2017, 44(8): 1980-1987. | |
[21] | WANG C, WANG X, WANG P, et al. Effects of iron on growth, antioxidant enzyme activity, bound extracellular polymeric substances and microcystin production of Microcystis aeruginosa FACHB-905[J]. Ecotoxicology & Environmental Safety, 2016, 132: 231-239. |
[22] | 王静. 铜绿微囊藻中砷的代谢与生物效应[D]. 天津: 天津大学,2012: 36-37. |
WANG Jing. Metabolism and biological effects of arsenic in Microcystis aeruginosa[D]. Tianjin: Tianjin University, 2012: 36-37. | |
[23] | 吴健. 不同结构类型离子液体对蛋白核小球藻的毒性研究[D]. 杭州: 浙江工商大学,2018: 48. |
WU Jian. Toxicity of ionic liquid with different structure on Chlorella pyrenoidosa[D]. Hangzhou: Zhejiang Gongshang University, 2018: 48. | |
[24] |
HAI Y, GANG P. Toxicity and bioaccumulation of copper in three green microalgal species[J]. Chemosphere, 2002, 49(5): 471-476.
pmid: 12363319 |
[25] | HUANG W J, WU C C, CHANG W C, et al. Bioaccumulation and toxicity of arsenic in cyanobacteria cultures separated from a eutrophic reservoir[J]. Environmental Monitoring & Assessment, 2014(186): 805-814. |
[26] | LI S, YU Y, GAO X, et al. Evaluation of growth and biochemical responses of freshwater microalgae Chlorella vulgaris due to exposure and uptake of sulfonamides and copper[J]. Bioresource Technology, 2021. DOI: 10.1016/j.biortech.2021.126064. |
[27] | 黄飞. 蛋白核小球藻对无机砷的吸附吸收及作用机制[D]. 杭州: 浙江大学,2018: 3. |
HUANG Fei. The adsorption and uptake of inorganic arsenic by Chlorella pyrenoidosa and the interaction mechanism[D]. Hangzhou: Zhejiang University, 2018: 3. | |
[28] | 孟丽娜, 彭春莹, 李铁栋, 等. 基于蛋白质组学对螺旋藻砷胁迫响应机制的研究[J]. 生物技术通报, 2020, 36(4): 107-116. |
MENG Lina, PENG Chunying, LI Tiedong, et al. Proteomic analysis of Spirulina platensis in response to arsenic stresss[J]. Biotechnology Bulletin, 2020, 36(4): 107-116. | |
[29] | MISHRA S, STARK H J, KUPPER H. A different sequence of events than previously reported leads to arsenic-induced damage in Ceratophyllum demersum L[J]. Metallomics, 2014, 6(3): 444-454. |
[1] | 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75. |
[2] | 陈荣轩, 孙辉, 于斌. N-TiO2/聚丙烯复合熔喷非织造材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(03): 137-147. |
[3] | 李红颖, 徐毅, 杨帆, 任瑞鹏, 周全, 吴丽杰, 吕永康. 三维乒乓菊状CdS/BiOBr催化剂的制备及其光催化降解罗丹明B[J]. 纺织学报, 2023, 44(09): 124-133. |
[4] | 韩博, 王玉霖, 舒大武, 王涛, 安芳芳, 单巨川. 活性染料染色废水的循环染色[J]. 纺织学报, 2023, 44(08): 151-157. |
[5] | 王国琴, 付小航, 朱羽科, 吴礼光, 王挺, 蒋孝佳, 陈华丽. 可见光响应的介孔TiO2光降解罗丹明B机制及其降解途径[J]. 纺织学报, 2023, 44(05): 155-163. |
[6] | 郑琳娟, 郁佳, 尹冲, 梁志结, 毛庆辉. 多酸基金属-有机框架负载棉织物的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 106-111. |
[7] | 周小桔, 胡正龙, 任一鸣, 谢兰东. Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 97-105. |
[8] | 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155. |
[9] | 王静, 娄娅娅, 王春梅. 铁基金属–有机框架材料/活性碳纤维复合材料的制备及其对染料的脱色[J]. 纺织学报, 2022, 43(08): 126-131. |
[10] | 张雅宁, 张辉, 宋悦悦, 李文明, 李雯君, 姚佳乐. 废弃口罩基ZIF-8/Ag/TiO2复合材料的制备及其光催化降解染料性能[J]. 纺织学报, 2022, 43(07): 111-120. |
[11] | 高陆玺, 吕雪川, 张弛, 宋翰林, 高肖汉. 用于印染废水处理的改性絮凝剂合成及其脱色性能[J]. 纺织学报, 2022, 43(07): 121-128. |
[12] | 钱佳琪, 瞿建刚, 胡啸林, 毛庆辉. 还原氧化石墨烯/粘胶基钒酸铋光催化材料的制备及其性能[J]. 纺织学报, 2022, 43(06): 100-106. |
[13] | 谢梦玉, 胡啸林, 李星, 瞿建刚. 还原氧化石墨烯/粘胶多层复合材料的制备及其界面蒸发性能[J]. 纺织学报, 2022, 43(04): 117-123. |
[14] | 邓杨, 石现兵, 王涛, 刘利伟, 韩振邦. 负载MIL-53(Fe)的改性聚丙烯腈纤维光催化剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 58-63. |
[15] | 魏娜娜, 刘碟, 马政, 焦晨璐. 纤维素/壳聚糖磁性气凝胶的冻融法制备及其对染料吸附性能[J]. 纺织学报, 2022, 43(02): 53-60. |
|