纺织学报 ›› 2024, Vol. 45 ›› Issue (07): 24-30.doi: 10.13475/j.fzxb.20230400101

• 纤维材料 • 上一篇    下一篇

辐射降温聚烯烃纳米纤维膜的制备及其性能

昌康琪1,2,3, 罗梦颖1, 赵青华1, 王栋1, 李沐芳1()   

  1. 1.武汉纺织大学 纺织纤维及制品教育部重点实验室, 湖北 武汉 430200
    2.江南大学 化学与材料工程学院, 江苏 无锡 214122
    3.深圳信息职业技术学院 滨海土木工程技术研究所, 广东 深圳 518172
  • 收稿日期:2023-04-03 修回日期:2023-10-20 出版日期:2024-07-15 发布日期:2024-07-15
  • 通讯作者: 李沐芳(1985—),女,教授,博士。主要研究方向为功能纤维材料。E-mail:mfli@wtu.edu.cn
  • 作者简介:昌康琪(1993—),男,硕士。主要研究方向为高分子共混与复合材料。
  • 基金资助:
    湖北省重点研发计划项目(2021BAA067);湖北省杰出青年基金项目(2021CFA068);湖北省高等学校优秀中青年科技创新团队项目(T2021007)

Preparation and properties of radiation cooling polyolefin nanofiber membrane

CHANG Kangqi1,2,3, LUO Mengying1, ZHAO Qinghua1, WANG Dong1, LI Mufang1()   

  1. 1. Key Laboratory of Textile Fiber and Products(Wuhan Textile University), Ministry of Education, Wuhan, Hubei 430200, China
    2. School of Chemical and Material Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    3. Institute of Technology for Marine Civil Engineering, Shenzhen Institute of Information Technology, Shenzhen, Guangdong 518172, China
  • Received:2023-04-03 Revised:2023-10-20 Published:2024-07-15 Online:2024-07-15

摘要:

为提高纳米纤维防护材料的热湿舒适性,利用乙烯-辛烯共聚弹性体(POE)和醋酸丁酸纤维素酯(CAB)为原料,通过熔融共混相分离法制备了辐射降温POE纳米纤维膜,并与乙烯醇-乙烯共聚物(PVA-co-PE)纳米纤维膜、棉织物进行对比,研究其形态结构、红外辐射透过率、降温效果及透湿性。结果表明:POE纳米纤维膜的形态均匀,平均直径为570 nm,其直径及孔径均大于PVA-co-PE纳米纤维膜;POE纳米纤维膜的中红外辐射(7~14 μm)透过率接近100%,且随着纳米纤维膜厚度的增加而明显下降。与之对比,PVA-co-PE纳米纤维膜在相应波段的透过率有所下降,而棉织物完全不能透过中红外光;POE纳米纤维膜具有更好的红外辐射降温效果,将其覆盖在加热模块表面后,真空条件下模块温度保持不变,室温条件下模块温度仅升高0.5 ℃;此外,POE纳米纤维膜表现出良好的透湿性,其透湿率为2 845 g/(m2·d),略低于棉织物的(3 530 g/(m2·d));将POE纳米纤维作为涂层材料涂覆在棉织物表面构筑复合防护膜,可提升棉织物的过滤阻隔性能,且不影响其热湿舒适性。

关键词: 乙烯醇-乙烯共聚物, 乙烯-辛烯共聚弹性体, 聚烯烃纳米纤维, 防护材料, 辐射降温, 透湿性

Abstract:

Objective For protective materials, excellent protective performance and wearing comfort are both important for their application. Although the nanofiber membrane has excellent protective performance, the small pore size and narrow pore size distribution prone to produce a stuffy feeling when worn for a long time, and would affect air permeability and moisture permeability. The wearing comfort of nanofiber protective materials still needs to be improved. Many ways are proposed to improve the wearing comfort of protective materials. Among them, the infrared radiation transmittance of the material has an important impact on its temperature regulation function, thus affecting the wearing comfort.

Method In order to improve the wearing comfort of nanofiber protective materials, the radiation cooling polyolefin elastomer (POE) nanofiber membrane was prepared by using the melt blended phase separation and subsequent deposition process. The morphology, infrared radiation transmittance, transparency, radiation cooling effect and water vapor transmittance of POE nanofiber membrane were studied and compared with the poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofiber membrane and cotton fabric.

Results The morphology of POE nanofiber membrane is uniform, with an average diameter of 570 nm, which is larger than that of PVA-co-PE nanofiber membrane. The POE nanofiber membrane is completely transparent to light in the mid-infrared band (7-14 μm), with a transmittance of almost 100%. This is mainly because the molecular structure of POE has no groups that can absorb mid-infrared light, and its pore size is much smaller than the mid-infrared wavelength, so it does not affect the mid-infrared radiation transmittance. The infrared radiation transmittance is directly related to the thickness of nanofiber membrane, and it decreases significantly with the increases of POE nanofiber membrane thickness. In contrast, the structure of PVA-co-PE contains groups that can absorb mid-infrared light, so that its transmittance in the corresponding band is reduced, while cotton fabric cannot transmit infrared light at all. As the infrared radiation accounts for more than 50% of the total heat loss of the human body, the POE nanofiber membrane has better infrared radiation cooling effect. At room temperature, the temperature of the heating module rises by only 0.5 ℃ after POE nanofiber membrane covering. Under vacuum, the temperature of the heating module remains unchanged after the POE nanofiber membrane is covered. Notably, the infrared transmittance of a material is not related to its transparency. In the visible light band, the transmittance of POE nanofiber membrane and cotton cloth is close to zero, and the transmittance of PVA-co-PE nanofiber membrane is about 30%. This is because the pore size of the POE nanofiber membrane is comparable to the wavelength of visible light, and light scattering makes the POE nanofiber membrane unable to transmit visible light. In addition, although POE is a hydrophobic polyolefin elastomer, it still has good moisture permeability by virtue of its three-dimensional porous structure. The water vapor transmittance of POE nanofiber membrane is 2 845 g/(m2·d), which is just slightly lower than the water vapor transmittance of 3 530 g/(m2·d) of cotton cloth. Therefore, the POE nanofibers can be used as coating materials to be coated on different substrate surfaces to improve the substrate protection performance without affecting its thermal and humid comfort.

Conclusion the prepared radiation cooling POE nanofiber membrane with excellent wearing comfort has a better thermal radiation cooling effect than PVA-co-PE nanofiber membrane and cotton fabric. The temperature change little after POE nanofiber membrane covering, hence maintaining excellent thermal comfort. In addition, the three-dimensional pore structure of POE nanofiber membrane gives it excellent moisture permeability, and its water vapor transmittance is only slightly lower than that of cotton fabric. The results demonstrate that the POE nanofiber membrane has excellent thermal and humid comfort, and it can be used as protective layer for medical use to improve protection without affecting comfort.

Key words: poly(vinyl alconol-co-ethylene), polyolefin elastomer, polyolefin nanofiber, protective material, infrared radiation cooling, moisture-permeable

中图分类号: 

  • TB34

图1

不同样品的表面SEM照片"

图2

POE和PVA-co-PE纳米纤维膜的直径分布图"

图3

不同样品的中红外光及可见光透过率"

图4

不同样品的红外热成像图"

表1

加热模块表面覆盖不同材料后的温度"

试样名称 温度/℃
室温下 真空下
空白样 34.0 34.0
POE纳米纤维膜 34.5 34.0
PVA-co-PE纳米纤维膜 34.7 34.4
棉织物 35.6 35.5
POE纳米纤维涂层棉织物 35.8 -

图5

POE纳米纤维膜及棉织物的水蒸气透过量随时间的变化"

图6

POE纳米纤维涂层棉织物表面的SEM照片"

[1] LIU Y, WANG X, LI N, et al. UV-crosslinked solution blown PVDF nanofiber mats for protective appli-cations[J]. Fibers and Polymers, 2020, 21: 489-497.
[2] HE Z, PAN Z. Biobased polymer SF/PHBV composite nanofiber membranes as filtration and protection materials[J]. The Journal of The Textile Institute, 2021. DOI:10.1080/00405000.2021.2020419.
[3] KUMAR S K S, PRAKASH C. Characterization of electrospun polyurethane/polyacrylonitrile nanofiber for protective textiles[J]. Iranian Polymer Journal, 2021, 30: 1263-1271.
[4] 柳洋, 夏兆鹏, 王亮, 等. 医用防护服的发展现状及趋势[J]. 纺织学报, 2021, 42(9): 195-201.
LIU Yang, XIA Zhaopeng, WANG Liang, et al. Development status and trend of antivirus medical protective clothing[J]. Journal of Textile Research, 2021, 42(9): 195-201.
[5] 刘艳, 吴建兵. 热湿舒适性医用防护服的面料优化与测试评价[J]. 江苏丝绸, 2022(5): 38-43.
LIU Yan, WU Jianbing. Fabric optimization and test evaluation of medical protective clothing for thermal and wet comfort[J]. Jiangsu Silk, 2022(5): 38-43.
[6] 牛梦雨, 潘姝雯, 戴宏钦, 等. 医用防护服的热湿舒适性与人体疲劳度的关系[J]. 纺织学报, 2021, 42(7): 144-150.
NIU Mengyu, PAN Shuwen, DAI Hongqin, et al. Relationship between thermal-moist comfort of medical protective clothing and human fatigue[J]. Journal of Textile Research, 2021, 42(7): 144-150.
[7] 刘熙子, 王娇, 雷淑莹, 等. 基于后疫情时代防护服舒适功能性路径研究[J]. 工业与技术, 2022(13): 41-44.
LIU Xizi, WANG Jiao, LEI Shuying, et al. Research on comfort functional path of protective clothing in post epidemic era[J]. Science & Technology Information, 2022(13): 41-44.
[8] 崔馨文. 医用一次性防护服的着装热湿舒适性及预测研究[D]. 上海: 东华大学, 2022: 10-12.
CUI Xinwen. Study and prediction of thermal comfort of medical disposable protective clothing[D]. Shanghai: Donghua University, 2022: 10-12.
[9] 韩玲, 马英博, 胡梦缘, 等. 改善医用一次性防护服热湿舒适性的研究进展[J]. 棉纺织技术, 2020, 48(4): 75-78.
HAN Ling, MA Yingbo, HU Mengyuan, et al. Research progress on improving thermal-wet comfort of single-use protective clothing for medical use[J]. Cotton Textile Technology, 2020, 48(4): 75-78.
[10] LIN Y, WANG C, MIAO D, et al. A trilayered composite fabric with directional water transport and resistance to blood penetration for medical protective clothing[J]. ACS Applied Materials & Interfaces, 2022, 14: 18944-18953.
[11] PRAJAPATI D G, KANDASUBRAMANIAN B. A review on polymeric-based phase change material for thermo-regulating fabric application[J]. Polymer Reviews, 2020, 60(3): 389-419.
[12] 吴钦鑫, 侯成义, 李耀刚, 等. 辐射降温纳米纤维医用防护服面料及传感系统集成[J]. 纺织学报, 2021, 42(9): 24-30.
WU Qinxin, HOU Chengyi, LI Yaogang, et al. Radiative cooling nanofiber medical fabrics and sensor system integration[J]. Journal of Textile Research, 2021, 42(9): 24-30.
[13] 关娟娟, 刘佳旺, 李钰, 等. 医用一次性防护服结构的优化设计[J]. 天津纺织科技, 2021(4): 1-4.
GUAN Juanjuan, LIU Jiawang, LI Yu, et al. Optimal design of the structure of disposable medical protective clothing[J]. Tianjin Textile Science Technology, 2021(4): 1-4.
[14] HSU P C, SONG A Y, CATRYSSE P B, et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science, 2016 (353): 1019-1023.
[15] CAI L, SONG A Y, WU P, et al. Warming up human body by nanoporous metallized polyethylene textile[J]. Nature Communications, 2017. DOI: 10.1038/s41467-017-00614-4.
[16] XIA M, YAO Z, XIONG Z, et al. High efficiency antibacterial, moisture permeable, and low temperature comfortable janus nanofiber Membranes for high performance air filters and respiration monitoring sensors[J]. Advanced Materials Interfaces, 2023. DOI: 10.1002/admi.202201952.
[17] XIA M, XIONG Z, YAO Z, et al. A novel gradient structured nanofiber and silver nanowire composite membrane for multifunctional air filters, oil water separation, and health monitoring flexible wearable devices[J]. Journal of Colloid and Interface Science, 2023(630): 484-493.
[18] YAO Z, XIA M, XIONG Z, et al. A hierarchical structure of flower-like zinc oxide and poly(vinyl alcohol-co-ethylene) nanofiber hybrid membranes for high-performance air filters[J]. ACS Omega, 2022, 7(3): 3030-3036.
[19] LI M, XIAO R, SUN G. Preparation of polyester nanofibers and nanofiber yarns from polyester/cellulose acetate butyrate immiscible polymer blends[J]. Journal of Applied Polymer Science, 2012, 124(1): 28-36.
[20] LI M, CHANG K, ZHONG W, et al. A highly stretchable, breathable and thermoregulatory electronic skin based on the polyolefin elastomer nanofiber membrane[J]. Applied Surface Science, 2019, 486: 249-256.
[21] LI M, XUE X, WANG D, et al. High performance filtration nanofibrous membranes based on hydrophilic poly(vinyl alcohol-co-ethylene) copolymer[J]. Desalination, 2013, 329: 50-56.
[1] 王兆芳, 张辉, 丁波, 张淼. 文胸罩杯透湿率测定新方法[J]. 纺织学报, 2024, 45(01): 176-184.
[2] 栗辰飞, 刘元军, 赵晓明. 生化防护服的研究进展[J]. 纺织学报, 2022, 43(07): 207-216.
[3] 杨群, 梁琦, 王黎明, 代正伟. 聚N-异丙基丙烯酰胺/聚氨酯梯度复合膜的温敏亲-疏水性及透湿性[J]. 纺织学报, 2021, 42(09): 17-23.
[4] 吴钦鑫, 侯成义, 李耀刚, 张青红, 秦宗益, 王宏志. 辐射降温纳米纤维医用防护服面料及传感系统集成[J]. 纺织学报, 2021, 42(09): 24-30.
[5] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[6] 吕凯敏, 戴宏钦. 化学防护服的研究进展[J]. 纺织学报, 2020, 41(05): 191-196.
[7] 万雨彩, 刘迎, 王旭, 易志兵, 刘轲, 王栋. 聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能[J]. 纺织学报, 2020, 41(04): 15-20.
[8] 李聃阳, 王瑞, 刘星, 张淑洁, 夏兆鹏, 阎若思, 代二庆. 剪切增稠液对不同结构芳纶织物防刺性能的影响[J]. 纺织学报, 2020, 41(03): 106-112.
[9] 张文娟, 纪峰, 张瑞云, 赵晓杰, 王妮, 王俊丽, 张建祥. 毛织物孔隙特征与透湿性关系[J]. 纺织学报, 2019, 40(01): 67-72.
[10] 李智勇 邵一卿 孙窈 张亮 夏鑫. 含氟聚氨酯的合成及其静电纺膜复合织物的防酸透湿性能[J]. 纺织学报, 2017, 38(10): 7-12.
[11] 张璐璐 丁放 胡雪燕 王鸿博 杜金梅. 疏水图形及面积对棉织物吸湿快干性能的影响[J]. 纺织学报, 2017, 38(09): 89-93.
[12] 马崇启 蔡薇琦 阚永葭. 酚醛纤维织物热湿舒适性的灰色聚类分析[J]. 纺织学报, 2016, 37(12): 29-32.
[13] 刘雷艮 沈忠安 洪剑寒. 静电纺高效防尘复合滤料的制备及其性能[J]. 纺织学报, 2015, 36(07): 12-16.
[14] 王维明 虞波 周丹红 冯云. 碱氧处理对阳离子可染中空聚酯针织物服用性能的影响[J]. 纺织学报, 2014, 35(4): 88-0.
[15] 孙戒;邵飞鹰;汪海波. γ—聚谷氨酸整理涤/棉织物的舒适性[J]. 纺织学报, 2009, 30(04): 65-68.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!