纺织学报 ›› 2023, Vol. 44 ›› Issue (12): 216-224.doi: 10.13475/j.fzxb.20230402602
ZHANG Yongfang(), FEI Pengfei, YAN Zhifeng, WANG Shuhua, GUO Hong
摘要:
为提高废弃纤维素纺织品的循环利用率,解决其引起的严重污染及浪费问题,介绍了水热降解法循环利用废弃纤维素纺织品的新途径。纤维素水热降解技术是一种利用亚(超)临界水进行热化学转化的新技术,综述了废弃纤维素纺织品水热降解技术的研究现状,分析了纤维素纤维亚(超)临界水热降解的机制、反应历程及产物种类,归纳了纤维素水热降解过程及降解产物的影响因素,对纤维素水热降解技术存在的问题及研究方向进行了总结与展望。分析认为:利用亚(超)临界水体系中水既是溶剂又是反应物和催化剂的特性,可以对纤维素类纺织品进行有效降解及分离回收,通过水解糖化、水热炭化等反应历程,得到水溶糖、水热炭、生物原油等多种水热产品;温度、时间、催化剂及纤维素结构对纤维素纤维水热降解有重要影响;目前该技术还存在部分反应机制不明确及目标产品产率较低等问题。基于这些问题对今后该领域的主要研究方向提出了建议。该技术绿色环保、成本低、产物可控、产品附加值高,具有很好的开发前景。
中图分类号:
[1] | ASHJARAN A, AZARMI R. Survey on common bio fibers and polymers in recyclable textiles[J]. Journal of Chemical & Pharmaceutical Research, 2015, 7:202-208. |
[2] | SHEN F, XIAO W X, LIN L L, et al. Enzymatic saccharification coupling with polyester recovery from cottonebased waste textiles by phosphoric acid pretreatment[J]. Bioresource Technology, 2013, 130:248-255. |
[3] | WANG J, LI Y, WANG Z, et al. Influence of pretreatment on properties of cotton fiber in aqueous NaOH/urea solution[J]. Cellulose, 2016, 23(3):2173-2183. |
[4] | ASAADI S, HUMMEL M, HELLSTEN S, et al. Renewable high-performance fibers from the chemical recycling of cotton waste utilizing an ionic liquid[J]. Chemsuschem, 2016, 22(9):3250-3258. |
[5] | MUSSANA H, YANG X, TESSIMA M, et al. Preparation of lignocellulose aerogels from cotton stalks in the ionic liquid-based co-solvent system[J]. Industrial Crops and Products, 2018, 113: 225-233. |
[6] | HONG F, GUO X, ZHANG S, et al. Bacterial cellulose production from cotton-based waste textiles: enzymatic saccharification enhanced by ionic liquid pretreatment[J]. Bioresource Technology, 2012, 104: 503-508. |
[7] | SILVA R D, WANG X, BYRNE N. Recycling textiles: the use of ionic liquids in the separation of cotton polyester blends[J]. RSC Advances, 2014, 55(4):29094-29098. |
[8] | 陈亚宁, 陈昀. 稀盐酸水解棉纤维反应过程的综合研究[J]. 北京服装学院学报(自然科学版), 2010, 30(2): 24-28. |
CHEN Yaning, CHEN Yun. Comprehensive study on the process of cotton fiber hydrolysis by dilute hydrochloric acid[J]. Journal of Beijing Institute of Fashion Technology(Natural Science Edition), 2010, 30(2):24-28. | |
[9] | CHU C Y, WU S Y, TSAI C Y, et al. Kinetics of cotton cellulose hydrolysis using concentrated acid and fermentative hydrogen production from hydrolysate[J]. International Journal of Hydrogen Energy, 2011, 36(14): 8743-8750. |
[10] | JEIHANIPOUR A, KARIMI K, NIKLASSON C, et al. A novel process for ethanol or biogas production from cellulose in blended-fibers waste textiles[J]. Waste Management, 2010, 30(12):2504-2509. |
[11] | LIN N, HUANG J, CHANG P R, et al. Surface acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic acid)[J]. Carbohydrate Polymers, 2011, 83:1834-1842. |
[12] | CERQUEIRA D A, FILHO G R, MEIRELES C D S. Optimization of sugarcane bagasse cellulose acetyla-tion[J]. Carbohydrate Polymers, 2007, 69(3):579-582. |
[13] | FILHO G R, MONTEIRO D S, MEIRELES C D S, et al. Synthesis and characterization of cellulose acetate produced from recycled newspaper[J]. Carbohydrate Polymers, 2008, 73:74-82. |
[14] | 刘红茹, 陈韵. 醇解法分离废弃涤棉混纺织物工艺研究[J]. 合成纤维工业, 2015, 38(6):22-24. |
LIU Hongru, CHEN Yun. Separation of waste polyester-cotton blended fabrics by glycolysis method[J]. China Synthetic Fiber Industry, 2015, 38(6):22-24. | |
[15] | MA M Y, WANG S, LIU Y, et al. Insights into the depolymerization of polyethylene terephthalate in methanol[J]. Journal of Applied Polymer Science, 2022.DOI:10.1002/app.52814. |
[16] | SARTOVA K, OMURZAK E, KAMBAROVA G, et al. Activated carbon obtained from the cotton processing wastes[J]. Diamond and Related Materials, 2019, 91:90-97. |
[17] | OZSEL B K, NIS B, MERYEMOGLU B, et al. Utilization of waste cotton linter for preparation of activated carbon to be used as catalyst support in aqueous-phase reforming process[J]. Environmental Progress & Sustainable Energy, 2019, 38(2):445-450. |
[18] | KIM S H, LEE C M, KAFLE K. Characterization of crystalline cellulose in biomass: basic principles, applications, and limitations of XRD, NMR, IR, Raman, and SFG[J]. Korean Journal of Chemical Engineering, 2013, 30(12):2127-2141. |
[19] | ONDA A, OCHI T, YANAGISAWA K. Hydrolysis of cellulose selectively into glucose over sulfonated activated-carbon catalyst under hydrothermal condi-tions[J]. Topics In Catalysis, 2009, 52(6/7):801-807. |
[20] | TALLARICO S, COSTANZO P, BONACCI S, et al. Combined ultrasound/microwave chemocatalytic method for selective conversion of cellulose into lactic acid[J]. Scientific Reports, 2019. DOI:10.1038/s41598-019-55487-y. |
[21] | 汪利平. 纤维素水热降解制备5-羧甲基糠醛的实验研究[D]. 天津: 天津大学, 2006:14-26. |
WANG Liping. Experimental study on the preparation of 5-carboxymethylfurfural by hydrothermal degradation of cellulose[D]. Tianjin: Tianjin University, 2006:14-26. | |
[22] | CUI L P, SHI S, HOU W S, et al. Hydrolysis and carbonization mechanism of cotton fibers in subcritical water[J]. New Carbon Materials, 2018, 33(3):245-250. |
[23] | BEDIAKO J K, WEI W, YUN Y S. Conversion of waste textile cellulose fibers into heavy metal adsorbents[J]. Journal of Industrial and Engineering Chemistry 2016, 43:61-68. |
[24] | CHENG X X, FU A P, LI H L, et al. Sustainable preparation of copper particles decorated carbon microspheres and studies on their bactericidal activity and catalytic properties[J]. ACS Sustainable Chemistry & Engineering, 2015, 3(10):2414-2422. |
[25] | MÖLLER M, HARNISCH F, SCHRÖDER U. Hydrothermal liquefaction of cellulose in subcritical water-the role of crystallinity on the cellulose reactivi-ty[J]. RSC Advances, 2013, 3(27):11035-11044. |
[26] | SASAKI M, FANG Z, FUKUSHIMA Y, et al. Dissolution and hydrolysis of cellulose in subcritical and supercritical water[J]. Industrial and Engineering Chemistry Research, 2000, 39(8):2883-2890. |
[27] | ABEL S, PETERS A, TRINKS S, et al. Impact of biochar and hydrochar addition on water retention and water repellency of sandy soil[J]. Geoderma, 2013, 202/203:183-191. |
[28] | REICHE S, KOWALEW N, SCHLOGL R. Influence of synthesis pH and oxidative strength of the catalyzing acid on the morphology and chemical structure of hydrothermal carbon[J]. Chemphyschem, 2015, 16(3): 579-587. |
[29] | DU Z, HU B, SHI A, et al. Cultivation of a microalga chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process[J]. Bioresource Technology, 2012, 126:354-357. |
[30] | PETERSON A A, VOGEL F, LACHANCE R P, et al. Thermochemical biofuel production in hydrothermal media: a review of sub- and supercritical water technologies[J]. Energy & Environmental Science, 2008, 1:32-65. |
[31] | SAVAGE P E. Organic chemical reactions in supercritical water[J]. Chemical Reviews, 1999, 99(2): 603-622. |
[32] | RUIZ H A, RODRÍGUEZ-JASSO R M, FERNANDES B D, et al. Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review[J]. Renewable & Sustainable Energy Reviews, 2013, 21: 35-51. |
[33] | LING C, SHI C, HOU W S, et al. Separation of waste polyester/cotton blended fabrics by phosphotungstic acid and preparation of terephthalic acid[J]. Polymer Degradation and Stability, 2019, 161:157-165. |
[34] | ZHANG Y F, HOU W S, GUO H, et al. Preparation and characterization of carbon microspheres from waste cotton textiles by hydrothermal carbonization[J]. Journal of Renewable Materials, 2019, 7(12): 1309-1319. |
[35] | LU X W, PELLECHIA P J, FLORA J R V, et al. Inflfluence of reaction time and temperature on product formation and characteristics associated with the hydrothermal carbonization of cellulose[J]. Bioresource Technology, 2013, 138:180-190. |
[36] | WANG S H, WEI M X, XU Q L, et al. Functional porous carbons from waste cotton fabrics for dyeing wastewater purification[J]. Fibers and Polymers, 2016, 17(2):212-219. |
[37] | AKHTAR J, AMIN N A S. A review on process conditions for optimum bio-oil yield in hydrothermal liquefaction of biomass[J]. Renewable and Sustainable Energy Reviews, 2011, 15(3):1615-1624. |
[38] | ZHANG L, LI C J, ZHOU D, et al. Hydrothermal liquefaction of water hyacinth: product distribution and identification[J]. Energy Sources Part A: Recovery, Utilization and Environmental Effects, 2013, 35(14): 1349-1357. |
[39] | MOHAN D, PITTMAN C U, STEELE P H. Pyrolysis of wood/biomass for bio-oil: a critical review[J]. Energy & Fuels, 2006, 20 (3):848-889. |
[40] | KRUSE A. Supercritical water gasification[J]. Biofuels Bioproducts & Biorefining-Biofpr, 2008, 2(5): 415-437. |
[41] | KRUSE A, HENNINGSEN T, SINAG A, et al. Biomass gasification in supercritical water: influence of the dry matter content and the formation of phenols[J]. Industrial & Engineering Chemistry Research, 2003, 42(16): 3711-3717. |
[42] | SINAG A, GULBAY S, USKAN B, et al. Comparative studies of intermediates produced from hydrothermal treatments of sawdust and cellulose[J]. Supercrit Fluids, 2009, 50:121-127. |
[43] | INOUE S, UNO S, MINOWA T. Carbonization of cellulose using the hydrothermal method[J]. Journal of Chemical Engineering of Japan, 2008, 41(3):210-215. |
[44] | SAKAKI T, SHIBATA M, MIKI T, et al. Decomposition of cellulose in near critical[J]. Energy Fuels, 1996, 10:684-688. |
[45] | XIAO L, SHI Z, XU F, et al. Hydrothermal carbonization of lignocellulosic biomass[J]. Bioresource Technology, 2012, 118:619-623. |
[46] | SEVILLA M, FUERTES A B. The production of carbon materials by hydrothermal carbonization of cellulose[J]. Carbon, 2009, 47(9):2281-2289. |
[47] | QI Y J, ZHANG M, QI L, et al. Mechanism for the formation and growth of carbonaceous spheres from sucrose by hydrothermal carbonization[J]. RSC Advances, 2016, 6(25):20814-20823. |
[48] | FUNKE A, ZIEGLER F. Hydrothermal carbonization of biomass: a summary and discussion of chemical mechanisms for process engineering[J]. Biofuels Bioproducts & Biorefining, 2010, 4:160-177. |
[49] | GAGIC T, PERVA-UZUNALIC A, KNEZ Z, et al. Hydrothermal degradation of cellulose at temperature from 200 to 300℃[J]. American Chemical Society, 2018, 57: 6576-6584. |
[50] | YAN L F, QI X Y. Degradation of cellulose to organic acids in its homogeneous alkaline aqueous solution[J]. American Chemical Society, 2014, 2(4):897-901. |
[51] | EHARA K, SAKA S. Decomposition behavior of cellulose in supercritical water, subcritical water, and their combined treatments[J]. Journal of Wood Science, 2005, 51(2):148-153. |
[52] | KIM D, YOSHIKAWA K, PARK K. Characteristics of biochar obtained by hydrothermal carbonization of cellulose for renewable energy[J]. Energies, 2015, 8(12): 14040-14048. |
[53] | KIM D, LEE K, PARK K Y. Upgrading the characteristics of biochar from cellulose, lignin, and xylan for solid biofuel production from biomass by hydrothermal carbonization[J]. Journal Of Industrial And Engineering Chemistry, 2016, 42:95-100. |
[54] | SAHA N, SABA A, REZA M T. Effect of hydrothermal carbonization temperature on pH, dissociation constants, and acidic functional groups on hydrochar from cellulose and wood[J]. Journal of Analytical & Applied Pyrolysis, 2019, 137:138-145. |
[55] | YANG F, LI G, GAO P, et al. Mild hydrothermal degradation of cotton cellulose by using a mixed-metal-oxide ZnO-ZrO2 catalyst[J]. Energy Technology, 2013, 1:581-586. |
[56] | ZHAO Y, LI W, ZHAO X, et al. Carbon spheres obtained via citric acid catalysed hydrothermal carbonisation of cellulose[J]. Materials Research Innovations, 2013, 17(7):546-551. |
[57] | DEGUCHI S, TSUJII K, HORIKOSHI K. Effect of acid catalyst on structural transformation and hydrolysis of cellulose in hydrothermal conditions[J]. Green Chemistry, 2008, 10(6):623-626. |
[58] | ZHANG C, LIN S, PENG J, et al. Preparation of highly porous carbon through activation of NH4Cl induced hydrothermal microsphere derivation of glucose[J]. RSC Advances, 2017, 7(11): 6486-6491. |
[59] | ZHAO H Y, LU X A, WANG Y, et al. Effects of additives on sucrose-derived activated carbon microspheres synthesized by hydrothermal carbonization[J]. Journal of Materials Science, 2017, 52(18):10787-10799. |
[60] | GARCÍA-BORDEJÉ E, PIRES E, FRAILE J M. Parametric study of the hydrothermal carbonization of cellulose and effect of acidic conditions[J]. Carbon, 2017, 123:421-432. |
[61] | MOLLER M, NILGES P, HARNISCH F, et al. Subcritical water as reaction environment: fundamentals of hydrothermal biomass transformation[J]. Chemsuschem, 2011, 4(5):566-579. |
[62] | SAKA S, UENO T. Chemical conversion of various celluloses to glucose and its derivatives in supercritical water[J]. Cellulose, 1999, 6(3):177-191. |
[63] | ZHANG Y F, DAI J M, GUO H, et al. A comparative study of carbon microsphere preparation by the hydrothermal carbonization of waste cotton fibers, viscose fibers and Avicel[J]. New Carbon Materials, 2020, 35(3):286-294. |
[1] | 李红颖, 徐毅, 杨帆, 任瑞鹏, 周全, 吴丽杰, 吕永康. 三维乒乓菊状CdS/BiOBr催化剂的制备及其光催化降解罗丹明B[J]. 纺织学报, 2023, 44(09): 124-133. |
[2] | 周小桔, 胡正龙, 任一鸣, 谢兰东. Bi2MoO6修饰TiO2复合纳米棒阵列光催化剂的制备及其光催化性能[J]. 纺织学报, 2022, 43(10): 97-105. |
[3] | 施敏慧, 李冰蕊, 王挺, 吴礼光. 高含盐废水中TiO2复合光催化剂光降解甲基橙机制及性能[J]. 纺织学报, 2021, 42(12): 103-110. |
[4] | 龙晓静 高翠丽 王兵兵 赵卫 潘若才 夏延致. 碳材料对海藻酸钠纺丝液降解性的影响[J]. 纺织学报, 2014, 35(2): 138-0. |
|