纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 67-75.doi: 10.13475/j.fzxb.20230403001

• 纤维材料 • 上一篇    下一篇

二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能

陆瑶瑶, 叶俊涛, 阮承祥(), 娄瑾   

  1. 江西科技师范大学 江西材料表面工程重点实验室, 江西 南昌 330036
  • 收稿日期:2023-04-18 修回日期:2024-01-15 出版日期:2024-04-15 发布日期:2024-05-13
  • 通讯作者: 阮承祥(1972—),男,教授,博士。主要研究方向为功能性碳纳米纤维。E-mail: cxruan@126.com。
  • 作者简介:陆瑶瑶(1997—),女,硕士生。主要研究方向为功能性碳纳米纤维及其复合材料。
  • 基金资助:
    国家自然科学基金项目(51363008)

Preparation and photocatalytic performance of titanium dioxide/porous carbon nanofibers composite material

LU Yaoyao, YE Juntao, RUAN Chengxiang(), LOU Jin   

  1. Jiangxi Key Laboratory of Surface Engineering, Jiangxi Science and Technology Normal University, Nanchang, Jiangxi 330036, China
  • Received:2023-04-18 Revised:2024-01-15 Published:2024-04-15 Online:2024-05-13

摘要:

为实现纳米二氧化钛(TiO2)的回收和重复使用,采用静电纺丝、高温煅烧和酸溶技术制备了多孔碳纳米纤维(PCNF),随后使用二次形核法将锐钛矿相TiO2负载到其表面,得到具有光催化活性的TiO2/PCNF复合材料。通过扫描电子显微镜、X射线衍射仪、X射线光电子能谱仪、紫外-可见漫反射光谱仪等表征了TiO2/PCNF复合材料的形貌结构、成分和光吸收性能,并测试了其对降解亚甲基蓝(MB)溶液的光催化性能。结果显示:复合材料的比表面积高达331.9 m2/g,光照30 min后对MB溶液(5 mg/L)的去除率为98.6%,光照60 min 后对MB溶液的去除率可达99.6%,均高于同等TiO2含量的对比组;重复使用5次后,其对MB溶液的去除率仍然保持在95.0%; PCNF是一种性能优异的光催化载体材料,它不仅能够实现对纳米TiO2的固定和回收,而且能提高TiO2的光催化性能。

关键词: 有机染料, 光降解, 二氧化钛, 静电纺丝, 碳纳米纤维, 亚甲基蓝, 二次形核法, 光催化性能, 废水处理

Abstract:

Objective With the widespread use of organic dyes, the residue of which have gradually become the main component of industrial wastewater and caused serious water pollution. As an environmentally friendly photocatalyst, titanium dioxide (TiO2) nanoparticles have been used in dye degradation, wastewater treatment and other fields due to their high photocatalytic activity, large specific surface area and easy preparation, but they also have problems such as wide band gap and difficult separation and recovery. Therefore, it is urgent to find a suitable carrier material to achieve effective separation and recovery of TiO2 without reducing its photocatalytic activity and stability.

Method Porous carbon nanofibers (PCNF) were prepared by electrospinning, high-temperature calcination, and acid dissolution. Then anatase TiO2 was loaded onto its surface by secondary nucleation method to obtain photocatalytic TiO2/PCNF composites. The morphology, structure, composition, and light absorption properties of TiO2/PCNF nanocomposites were characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and UV-Vis diffuse reflection spectroscopy, and the photocatalytic properties of TiO2/PCNF nanocomposites were tested by degradation methylene blue (MB) solution.

Results SEM results showed that TiO2 nanoparticles were uniformly loaded on porous CNF surfaces, while it was difficult to be loaded on smooth CNF surfaces. This showed that the mesoporous surface of carbon nanofibers was the key to the loading of TiO2. XRD results indicated that the three samples prepared, i.e., TiO2, TiO2/PCNF and TiO2/CNF were of anatase phase TiO2. Compared with rutile phase and titanite phase, anatase phase TiO2 had better photocatalytic activity, so it was beneficial to improve the photocatalytic performance of TiO2/PCNF. The full spectrum of XPS showed that Ti, O, C, F and N elements existed in TiO2/PCNF composites, which further proved that TiO2 had been successfully loaded onto the surface of porous carbon nanofibers. The UV-Vis DRS results showed that significant redshift could occur when TiO2 was loaded onto both PCNF and CNF surfaces, which not only increased the utilization rate of visible light, but also reduced the band gap value. Brunauer-Emmett-Teller(BET)results suggested that the prepared TiO2/PCNF composites had mesoporous structures, and the specific surface area was as high as 331.9 m2/g, providing abundant active sites for adsorption and surface reaction. The photocatalytic tests showed that the removal efficiency of TiO2/PCNF composites was higher than that of the control group with the same TiO2 content. After 30 min illumination of TiO2/PCNF composite material, the removal rate of MB solution of 5 mg/L was 98.6%, and after 60 min illumination, the removal rate of MB solution could reach 99.6%. However, the removal rates of TiO2 and TiO2/CNF composites in the control group were only 93.3% and 73.2% for MB solution after 30 min illumination. After repeated use for 5 times, the removal rate of TiO2/PCNF on MB solution remained at 95.0%. All these indicated that TiO2/PCNF composites have excellent photocatalytic and reusable properties.

Conclusion The TiO2/PCNF composite was successfully prepared by secondary nucleation method, and the composite had excellent photocatalytic and reusable properties. Compared with CNF, it was found that PCNF with mesoporous structure was more conducive to the loading of TiO2. The improvement of photocatalytic performance of TiO2/PCNF composites was mainly attributed to the following reasons. ①All the prepared TiO2 were anatase phase, which has better photocatalytic activity than rutile phase and plate titanite phase. ②The TiO2/PCNF composite increased the response range of TiO2 to visible light, which was conducive to improve the utilization rate of TiO2 for visible light. ③PCNF had excellent electrical conductivity, which was conducive to accelerating the separation of TiO2 photogenerated electrons and holes. ④PCNF had a large specific surface area, which providing more active sites both for MB adsorption and surface reactions.

Key words: organic dye, photodegradation, titanium dioxide, electrospinning, carbon nanofiber, methylene blue, secondary nucleation method, photocatalytic performance, wastewater treatment

中图分类号: 

  • TQ619.2

图1

CNF、PCNF前驱体、PCNF、TiO2、TiO2/PCNF及TiO2/CNF复合材料的扫描电镜照片(×10 000)"

图2

TiO2、TiO2/PCNF和TiO2/CNF复合材料的X射线衍射光谱图"

图3

TiO2/PCNF复合材料的X射线光电子能谱图"

图4

TiO2、TiO2/PCNF复合材料和TiO2/CNF复合材料的紫外-可见漫反射光谱图和带隙图"

图5

TiO2、TiO2/PCNF复合材料和TiO2/CNF复合材料的 N2吸附-脱附等温线和孔径分布曲线"

表1

TiO2、TiO2/PCNF、TiO2/CNF的BET分析结果"

试样名称 孔径/
nm
孔体积/
(cm3·g-1)
比表面积/
(m2·g-1)
TiO2 3.943 0.220 275.015
TiO2/PCNF 1.382 0.106 331.940
TiO2/CNF 13.171 0.216 58.418

图6

TiO2、TiO2/PCNF复合材料和TiO2/CNF复合材料的UV-Vis谱图和降解率曲线图"

图7

TiO2/PCNF复合材料循环实验的降解率曲线图"

[1] MAO D, YUAN J, QU X, et al. Size tunable Bi3O4Br hierarchical hollow spheres assembled with {001}-facets exposed nanosheets for robust photocatalysis against phenolic pollutants[J]. Journal of Catalysis, 2019, 369: 209-221.
[2] CHEN J, XIONG Y, DUAN M, et al. Insight into the synergistic effect of adsorption-photocatalysis for the removal of organic dye pollutants by Cr-doped ZnO[J]. Langmuir, 2019, 36(2):520-533.
[3] ZHANG Q, YU L, YANG B, et al. Magnetic Fe3O4@Ru-doped TiO2 nanocomposite as a recyclable photocatalyst for advanced photodegradation of methylene blue in simulated sunlight[J]. Chemical Physics Letters, 2021. DOI:10.1016/j.cplett.2021.138609.
[4] HENG J, TANG K Y, MD R, et al. Solar-powered photodegradation of pollutant dyes using silver-embedded porous TiO2 nanofibers[J]. Nanomaterials, 2021. DOI:10.3390/nano11040856.
[5] 杨丽, 王涛, 石现兵, 等. 改性聚丙烯腈纤维负载 MoSx/TiO2 光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(9): 149-155.
YANG Li, WANG Tao, SHI Xianbing, et al. Preparation of modified polyacrylonitrile fiber supported MoSx/TiO2 composite photocatalyst and its performance for dye degradation[J]. Journal of Textile Research, 2022, 43(9): 149-155.
[6] ZHANG Q, YU L, XU C, et al. A novel method for facile preparation of recoverable Fe3O4@TiO2 core-shell nanospheres and their advanced photocatalytic application[J]. Chemical Physics Letters, 2020. DOI:10.1016/j.cplett.2020.138073.
[7] LI R, LI T, ZHOU Q. Impact of titanium dioxide(TiO2) modification on its application to pollution treatment: a review[J]. Catalysts, 2020. DOI:10.3390/catal10070804.
[8] YU D, BAI J, GU Y, et al. Solvothermal synthesis of TiO2/CNFs heterostructures with photocatalytic activity[J]. Nano, 2015. DOI:10.1142/S1793292015500800.
[9] DODOO-ARHIN D, BUABENG F P, MWABORA J M, et al. The effect of titanium dioxide synthesis technique and its photocatalytic degradation of organic dye pollutants[J]. Heliyon, 2018. DOI:10.1016/j.heliyon.2018.e00681.
[10] 李梦悦, 房国丽, 张刚, 等. TiO2/AC复合材料的吸附性与光催化性能[J]. 河北大学学报(自然科学版), 2018, 38(5):480-489.
doi: 10.3969/j.issn.1000-1565.2018.05.006
LI Mengyue, FANG Guoli, ZHANG Gang, et al. Adsorption and photocatalytic performance of TiO2/AC composites[J]. Journal of Hebei University (Natural Science Edition), 2018, 38(5):480-489.
[11] XIAO F, GUO X, LI J, et al. Electrospinning preparation and dye adsorption capacity of TiO2@carbon flexible fiber[J]. Ceramics International, 2019, 45(9): 11856-11860.
[12] CHUNG W J, CHUN S Y, KIM S S, et al. Photocatalytic removal of tetracycline using TiO2/Ge composite optimized by response surface methodo-logy (RSM)[J]. Journal of Industrial & Engineering Chemistry, 2016,36:320-325.
[13] 费锡智, 杨晶晶, 白仁碧. 光催化-膜分离耦合技术的水处理应用研究进展[J]. 水处理技术, 2014(12): 11-18.
FEI Xizhi, YANG Jingjing, BAI Renbi. Research progress in application of photocatalysis membrane separation coupling technology in water treatment[J]. Water Treatment Technology, 2014(12):11-18.
[14] MARINHO B A, DE SOUZA S M A G U, DE SOUZA A A U, et al. Electrospun TiO2 nanofibers for water and wastewater treatment: a review[J]. Journal of Materials Science, 2021, 56:5428-5448.
[15] ZHOU F L, GONG R H, PORAT I. Mass production of nanofibre assemblies by electrostatic spinning[J]. Polymer International, 2010, 58(4):331-342.
[16] XUE J, WU T, DAI Y, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8):5298-5415.
doi: 10.1021/acs.chemrev.8b00593 pmid: 30916938
[17] CHANG G, ULLAH W, HU Y, et al. Functional carbon nanofibers with semi-embedded titanium oxide particles via electrospinning[J]. Macromolecular Rapid Communications, 2018. DOI:10.1002/marc.201800102.
[18] BLANCO M, MONTESERIN C, ANGULO A, et al. TiO2-doped electrospun nanofibrous membrane for photocatalytic water treatment[J]. Polymers, 2019. DOI:10.3390/polym11050747.
[19] 张梦媛, 黄庆林, 黄岩, 等. 静电纺聚四氟乙烯/二氧化钛光催化纳米纤维膜的制备及其应用[J]. 纺织学报, 2019, 40(9): 1-7.
ZHANG Mengyuan, HUANG Qinglin, HUANG Yan, et al. Electrospun poly(tetrafluoroethylene)/TiO2 photocatalytic nanofiber membrane and its applica-tion[J]. Journal of Textile Research, 2019, 40(9): 1-7.
[20] 钱怡帆, 周堂, 张礼颖, 等. 聚丙烯腈/醋酸纤维素/TiO2复合纳米纤维膜的制备及其光催化降解性能[J]. 纺织学报, 2020, 41(5):8-14.
QIAN Yifan, ZHOU Tang, ZHANG Liying, et al. Preparation of polyacrylonitrile/cellulose acetate/TiO2 composite nanofiber membrane and its photocatalytic degradation performance[J]. Journal of Textile Research, 2020, 41(5):8-14.
[21] AGHASILOO P, YOUSEFZADEH M, LATIFI M, et al. Highly porous TiO2 nanofibers by humid-electrospinning with enhanced photocatalytic proper-ties[J]. Journal of alloys and compounds, 2019, 790:257-265.
[22] XU S, HOU Z, CHUAI X, et al. Overview of secondary nucleation: from fundamentals to application[J]. Industrial & Engineering Chemistry Research, 2020, 59(41): 18335-18356.
[23] 于翔, 张效琳, 孟青青, 等. TiO2/碳纳米纤维膜的制备与光催化性能[J]. 工业水处理, 2020, 40(12):96-99.
doi: 10.11894/iwt.2020-0049
YU Xiang, ZHANG Xiaolin, MENG Qingqing, et al. Preparation of TiO2/carbon nanofibers membrane and its photocatalytic performance[J]. Industrial Water Treatment, 2020, 40(12):96-99.
doi: 10.11894/iwt.2020-0049
[24] BALTA Z, BILGINSIMSEK E, BEREK D. Solvothermal synthesis of WO3/TiO2/carbon fiber composite photocatalysts for enhanced performance under sunlight illumination[J]. Photochemistry and Photobiology, 2019, 95(6):1331-1338.
[25] ETACHERI V, DI VALENTIN C, SCHNEIDER J, et al. Visible-light activation of TiO2 photocatalysts: advances in theory and experiments[J]. Journal of Photochemistry & Photobiology C Photochemistry Reviews, 2015, 25:1-29.
[26] HAN X, KUANG Q, JIN M, et al. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties[J]. Journal of The American Chemical Society, 2009, 131(9):3152-3153.
doi: 10.1021/ja8092373 pmid: 19216572
[27] 张天亮, 李军, 熊巍, 等. 碳酸钾活化一步法制备高比表活性炭及其电容性能的研究[J]. 无机盐工业, 2022, 54(4):159-164.
ZHANG Tianliang, LI Jun, XIONG Wei, et al. Study on one-step preparation of activated carbon with high specific surface by K2CO3 activation and its capacitance performance[J]. Inorganic Chemicals Industry, 2022, 54(4):159-164.
[28] RAZA N, RAZA W, GUL H, et al. Solar-light-active silver phosphate/titanium dioxide/silica heterostructures for photocatalytic removal of organic dye[J]. Journal of Cleaner Production, 2020. DOI:10.1016/j.jclepro.2020.120031.
[1] 梁文静, 吴俊贤, 何崟, 刘皓. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(04): 15-23.
[2] 李方, 张怡立, 王曼, 孟祥周, 沈忱思. 锑污染物对绿藻及蓝藻的急性毒性效应[J]. 纺织学报, 2024, 45(04): 169-179.
[3] 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32.
[4] 贾琳, 董晓, 王西贤, 张海霞, 覃小红. 聚己内酯/MgO复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(04): 59-66.
[5] 杨琪, 邓南平, 程博闻, 康卫民. 树枝状磺化聚醚砜纤维基复合固态电解质的制备及其性能[J]. 纺织学报, 2024, 45(03): 1-10.
[6] 赵美奇, 陈莉, 钱现, 李晓娜, 杜迅. 用于铜离子检测的静电纺纤维膜制备及其性能[J]. 纺织学报, 2024, 45(03): 11-18.
[7] 陈荣轩, 孙辉, 于斌. N-TiO2/聚丙烯复合熔喷非织造材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(03): 137-147.
[8] 田博阳, 王向泽, 杨湙雯, 吴晶. 非对称结构纤维膜的制备及其热调控性能[J]. 纺织学报, 2024, 45(02): 11-20.
[9] 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188.
[10] 周歆如, 范梦晶, 岳欣琰, 洪剑寒, 韩潇. 导电微纳纤维复合纱的制备及其气敏特性[J]. 纺织学报, 2024, 45(02): 52-58.
[11] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[12] 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64.
[13] 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16.
[14] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
[15] 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!