纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 126-135.doi: 10.13475/j.fzxb.20230403301

• 染整工程 • 上一篇    下一篇

植酸/壳聚糖对涤纶/棉混纺织物的协同阻燃整理

胡自强, 骆晓蕾, 魏璐琳, 刘琳()   

  1. 浙江理工大学 材料科学与工程学院, 浙江 杭州 310018
  • 收稿日期:2023-04-20 修回日期:2023-12-24 出版日期:2024-04-15 发布日期:2024-05-13
  • 通讯作者: 刘琳(1981—),女,教授,博士。主要研究方向为生物基纤维与功能纺织品。E-mail:linliu@zstu.edu.cn。
  • 作者简介:胡自强(1997—),男,硕士生。主要研究方向为功能性阻燃材料。
  • 基金资助:
    浙江省尖兵领雁研发攻关计划项目(2022C03093)

Synergistic flame retardant finishing of polyester/cotton blended fabric with phytic acid/chitosan

HU Ziqiang, LUO Xiaolei, WEI Lulin, LIU Lin()   

  1. College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2023-04-20 Revised:2023-12-24 Published:2024-04-15 Online:2024-05-13

摘要:

针对涤纶/棉混纺织物的易燃问题,采用植酸(PA)和壳聚糖(CS)构成膨胀阻燃体系,通过浸渍烘焙法对涤纶/棉混纺织物进行阻燃整理,并对整理前后织物的化学结构、表面形貌、热稳定性、燃烧行为、力学性能及耐水洗性等进行探究。通过工艺调控与优化,获得最佳阻燃整理工艺:烘焙温度160 ℃,烘焙时间120 s,CS质量浓度30 g/L, PA质量浓度400 g/L。经过阻燃整理后,所得涤纶/棉混纺织物的极限氧指数值由17.8%上升到28.7%,达到难燃级别;热重结果表明,相较于原涤纶/棉混纺织物,阻燃涤纶/棉混纺织物的分解速率下降,高温热稳定性显著提高,在氮气气氛下,800 ℃时残炭率提高到25%以上;阻燃涤纶/棉混纺织物的最大热释放速率由原涤纶/棉混纺织物的145.86 kW/m2下降到96.96 kW/m2,总热释放量由原涤纶/棉混纺织物的2.75 MJ/m2下降到2.06 MJ/m2; PA和CS在织物表面构成膨胀阻燃涂层,显著提高了织物的阻燃性能。

关键词: 涤纶/棉混纺织物, 壳聚糖, 植酸, 阻燃整理, 生物质膨胀阻燃体系, 功能性纺织品

Abstract:

Objective Polyester/cotton fabric (PC) combines the comfort, air permeability of cotton and stability, high mechanical of polyester, and it is widely used in aerospace, home decoration and other fields. However, the PC produces heat and smoke when burning, accompanied by a serious melting phenomenon, which seriously endangers people's life and health and property safety. The combustion will produce a "wick effect", making the combustion process more intense. Therefore, it is essential to improve the flame retardant performance of PC.

Method To improve the flame retardant property of PC, by using phytic acid (PA) from biology to provide a phosphorus source and chitosan (CS) to provide nitrogen source and carbon source, the expansion flame retardant system was constructed on the surface of PC by the impregnation-baking process to prepare flame retardant polyester/cotton fabric (PC-PA/CS) which improved the flame retardant property of PC.

Results The optimal preparation process of PC-PA/CS was determined by the limiting oxygen index (LOI) value: baking temperature was 160 ℃, baking time was 120 s, CS concentration was 30 g/L, and PA concentration was 400 g/L. The LOI value of flame retardant polyester cotton fabric reached to 28.7%. Infrared spectrum analysis showed that the flame retardant finishing liquid composed of PA and CS was successfully deposited on the surface of polyester/cotton fabric. From the scanning electron microscopy images, the fibers in PC showed obvious dents after pretreatment. After flame retardant treatment, the dents on the fiber of PC-PA/CS surface disappeared and the surface became smooth, with a uniform coating on the surface. Compared with PC, after flame-retardant finishing, the decomposition temperature of cotton with PC-PA/CS was advanced from 377 ℃ to 256 ℃, the maximum decomposition rate of fabric was reduced, and stable char layer can be formed. And the char residual rate is increased to more than 25% at 800 ℃ in N2. Flame retardant finishing has succeeded in improving the thermal stability of polyester and cotton fabric. The results of cone calorimetry test showed that the maximum heat release rate (PHRR) and total heat release (THR) of PC were 145.86 kW/m2 and 2.75 MJ/m2, respectively. The PHRR and THR of PC-PA/CS were 96.96 kW/m2 and 2.06 MJ/m2, respectively, which decreased by 33.53% and 25.10%, respectively, showing that the coating had good thermal inhibition ability. The combustion growth rate index (FGR) was decreased from 6.34 kW/(m2·s) to 3.88 kW/(m2·s), and the fire safety of the fabric was increased. The breaking strength of PC was 50.62 N, while that of PC-PA/CS decreased to 48.86 N which remained above 95% of original fabric. The introduction of CS reduced the influence of thermal and acidic environment on the mechanical properties of fabrics. The introduction of flame retardant coating formed a stable expanded carbon layer on the surface during the combustion process of the fabric, which improved the flame retardant performance of the fabric and has a condensed phase flame retardant mechanism.

Conclusion PC-PA/CS was successfully prepared by dipping-baking method, using PA and CS of biomass to form an expansion flame retardant system together with PC. The LOI value of PC-PA/CS increased significantly from 17.8% to 28.7%, and the droplet phenomenon disappeared, showing excellent flame retardant property. The introduction of flame retardant coating improved the thermal stability and char residual rate of the fabric. Flame retardant finishing effectively reduced the heat release and improved the fire safety of PC. When the fabric was burned, it can form a stable expanded char layer, increased the degree of graphitization of the char layer, and improved the flame retardant performance of PC, which had the flame retardant mechanism of condensed phase.

Key words: polyester/cotton blended fabric, chitosan, phytic acid, flame retardant finishing, biomass expansion flame retardant system, functional textile

中图分类号: 

  • TS195.2

图1

烘焙温度对涤纶/棉混纺织物带液率、质量增加率、LOI值和白度的影响"

图2

烘焙时间对涤纶/棉混纺织物带液率、质量增加率和LOI值的影响"

图3

CS质量浓度对涤纶/棉混纺织物带液率、质量增加率和LOI值的影响"

图4

PA质量浓度对涤纶/棉混纺织物带液率、质量增加率和LOI值的影响"

图5

整理前后涤纶/棉混纺织物的全反射红外光谱"

图6

阻燃整理前后涤纶/棉混纺织物的微观形貌与元素组成"

图7

氮气及空气中阻燃整理前后涤纶/棉混纺织物的TG与DTG曲线"

图8

阻燃整理前后涤纶/棉混纺织物在空气中持续点燃的数码照片"

图9

阻燃整理前后涤纶/棉混纺织物的锥形量热测试结果"

表1

阻燃整理前后涤纶/棉织物的锥形量热数据"

样品 PHRR/
(kW·m-2)
THR/
(MJ·m-2)
TPHRR/
s
FGR/
(kW·m-2·s-1)
残炭量/
%
整理前 145.86 2.62 23 6.34 6.33
整理后 96.96 2.06 25 3.88 21.33

图10

阻燃整理前后涤纶/棉混纺织物的应力-应变曲线及耐水洗性"

图11

阻燃整理前后涤纶/棉织物经过锥形量热测试后炭渣的形态数码照片"

图12

阻燃整理前后涤纶/棉织物经过锥形量热测试后炭渣的SEM照片"

图13

阻燃整理前后涤纶/棉混纺织物经过锥形量热测试后炭渣的拉曼光谱"

图14

整理后涤纶/棉织物经过锥形量热测试后炭渣的元素分布图"

图15

阻燃涤纶/棉混纺织物的阻燃机制示意图"

[1] YANG Xianwen, LIU Xiaohui, YANG Xuan, et al. A phosphorous/nitrogen-containing flame retardant with UV-curing for polyester/cotton fabrics[J]. Cellulose, 2022, 29: 1263-1281.
[2] SUN Yafu, LIU Chunyu, HONG Yan, et al. Synthesis and application of self-crosslinking and flame retardant waterborne polyurethane as fabric coating agent[J]. Progress in Organic Coatings, 2019, 137:105323-105323.
[3] 刘新华, 刘海龙, 方寅春, 等. 聚乙烯亚胺/植酸层层自组装阻燃涤/棉混纺织物制备及其性能[J]. 纺织学报, 2021, 42(11): 103-109.
doi: 10.13475/j.fzxb.20201206407
LIU Xinhua, LIU Hailong, FANG Yinchun, et al. Preparation and properties of flame retardant polyester/cotton blended fabrics by layer-by-layer assemblying polyethylenimine/phytic acid[J]. Journal of Textile Research, 2021, 42(11): 103-109.
doi: 10.13475/j.fzxb.20201206407
[4] PAN Ying, LIU Longxiang, WANG Xin, et al. Hypophosphorous acid cross-linked layer-by-layer assembly of green polyelectrolytes on polyester-cotton blend fabrics for durable flame-retardant treatment[J]. Carbohydrate Polymers, 2018, 201: 1-8.
doi: S0144-8617(18)30942-1 pmid: 30241800
[5] KUNDU C K, LI Zhiwei, SONG Lei, et al. An overview of fire retardant treatments for synthetic textiles: from traditional approaches to recent applications[J]. European Polymer Journal, 2020. DOI:10.1016/j.eurpolymj.2020.109911.
[6] GIBERTINI E, CAROSIO F, AYKANAT K, et al. Silica-encapsulated red phosphorus for flame retardant treatment on textile[J]. Surfaces and Interfaces, 2021. DOI:10.1016/j.surfin.2021.101252.
[7] WANG Shihao, SUN Ling, LI Yuyang, et al. Properties of flame-retardant cotton fabrics: combustion behavior, thermal stability and mechanism of Si/P/N synergistic effect[J]. Industrial Crops and Products, 2021. DOI:10.1016/j.indcrop.2021.114157.
[8] 王菁, 陈蕾, 李圣军, 等. 化学性膨胀阻燃剂的研究进展[J]. 工程塑料应用, 2022, 50 (11): 157-162.
WANG Jing, CHEN Lei, LI Shengjun, et al. Research progress of chemical intumescent flame retardants[J]. Engineering Plastics Application, 2022, 50 (11): 157-162.
[9] 赵文靖, 刘延松, 谭伟, 等. 生物质阻燃涂层在涤纶纺织品上的研究进展[J]. 精细化工, 2022, 39(1): 65-73.
ZHAO Wenjing, LIU Yansong, TAN Wei, et al. Research progress of biomass flame retardant coatings on polyester textiles[J]. Fine Chemicals, 2022, 39(1): 65-73.
[10] LIANG Yuqing, JIAN Hao, DENG Chao, et al. Research and application of biomass-based wood flame retardants: a review[J]. Polymers, 2023. DOI:10.3390/polym15040950.
[11] SYKAM K, FORSTH M, SAS G, et al. Phytic acid: a bio-based flame retardant for cotton and wool fabrics[J]. Industrial Crops and Products, 2021. DOI:10.1016/j.indcrop.2021.113349.
[12] JEONG S H, PARK C H, SONG Hyewon, et al. Biomolecules as green flame retardants: recent progress, challenges, and opportunities[J]. Journal of Cleaner Production, 2022. DOI:10.1016/j.jclepro.2022.133241.
[13] JIANG Wei, JIN Fanlong, PARK S J. Synthesis of a novel phosphorus-nitrogen-containing intumescent flame retardant and its application to fabrics[J]. Journal of Industrial & Engineering Chemistry, 2015, 27: 40-43.
[14] MA Yanan, LUO Xiaolei, LIU Lin, et al. Eco-friendly,efficient and durable fireproof cotton fabric prepared by a feasible phytic acid grafting route[J]. Cellulose, 2021, 28(1): 3887-3899.
[15] ZHANG Tao, YAN Hongqiang, SHEN Lie, et al. A phosphorus-, nitrogen- and carbon-containing polyelectrolyte complex: preparation, characterization and its flame retardant performance on polypropy-lene[J]. Rsc Advances, 2014, 4: 48252-48292.
[16] 黄益婷, 程献伟, 关晋平, 等. 磷/氮阻燃剂对涤纶/棉混纺织物的阻燃整理[J]. 纺织学报, 2022, 43(6): 94-106.
HUANG Yiting, CHENG Xianwei, GUAN Jinping, et al. Phosphorus/nitrogen-containing flame retardant for flame retardant finishing of polyester/cotton blended fabric[J]. Journal of Textile Research, 2022, 43(6): 94-106.
[17] ZHANG Zhihao, LI Xinjuan, MA Zhongying, et al. A facile and green strategy to simultaneously enhance the flame retardant and mechanical properties of poly(vinyl alcohol) by introduction of a bio-based polyelectrolyte complex formed by chitosan and phytic acid[J]. Dalton Transactions, 2020, 49: 11226-11237.
[18] CHENG Xianwei, GUAN Jinping, YANG Xuhong, et al. A bio-resourced phytic acid/chitosan polyelectrolyte complex for the flame retardant treatment of wool fabric[J]. Journal of Cleaner Production, 2019, 223: 342-349.
doi: 10.1016/j.jclepro.2019.03.157
[19] 李亮, 刘德驹, 蔡再生. 棉用磷氮阻燃剂的制备及其阻燃性能[J]. 印染, 2020, 46(4): 35-40.
LI Liang, LIU Deju, CAI Zaisheng. Synthesis and application of a novel flame-retardant containing phosphorus and nitrogen for cotton[J]. China Dyeing & Finishing, 2020, 46(4): 35-40.
[20] CHAVALI K S, PETHSANGAVE D A, PATANKAR K C, et al. Graphene-based intumescent flame retardant on cotton fabric[J]. Journal of Materials Science, 2020(3): 14197-14210.
[21] 张晨牧, 刘景洋, 孙晓明, 等. 壳聚糖络合-陶瓷膜耦合技术处理低浓度含铜废水[J]. 环境工程学报, 2015, 9(1): 83-88.
ZHANG Chenmu, LIU Jingyang, SUN Xiaoming, et al. Treatment of wastewater containing low concentration of Cu ion using complexation-ceramic membrane with chitosan[J]. Chinese Journal of Environmental Engineering, 2015, 9(1): 83-88.
[1] 向娇娇, 柳浩, 欧阳申珅, 马万彬, 柴丽琴, 周岚, 邵建中, 刘国金. 高疏水性双面结构生色棉织物的一步法制备[J]. 纺织学报, 2024, 45(04): 111-119.
[2] 张永芳, 郭红, 史晟, 阎智锋, 侯文生. 涤纶/棉混纺织物在水热体系中的降解[J]. 纺织学报, 2024, 45(04): 160-168.
[3] 李丽丽, 袁亮, 唐雨霞, 杨文菊, 王浩. 聚多巴胺/壳聚糖改性棉织物的茶色素染色及其抗菌和防紫外线性能[J]. 纺织学报, 2024, 45(03): 106-113.
[4] 李曼丽, 季志浩, 龙柱, 王益峰, 金恩琪. 壳聚糖荧光防伪印花涂料的制备及其应用性能[J]. 纺织学报, 2024, 45(03): 114-121.
[5] 李平, 朱平, 刘云. 壳聚糖基膨胀阻燃涤纶/棉混纺织物的制备及其性能[J]. 纺织学报, 2024, 45(02): 162-170.
[6] 孙浪涛, 杨宇珊. 调温抗菌微胶囊的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(02): 171-178.
[7] 肖昊, 孙辉, 于斌, 朱祥祥, 杨潇东. 壳聚糖-SiO2气凝胶/纤维素/聚丙烯复合水刺材料的制备及其吸附染料性能[J]. 纺织学报, 2024, 45(02): 179-188.
[8] 范硕, 杨鹏, 曾锦豪, 宋潇迪, 龚昱丹, 肖遥. 抗熔滴型多元有机硅阻燃剂整理锦纶6织物的制备及其性能[J]. 纺织学报, 2024, 45(01): 152-160.
[9] 陈顺, 钱坤, 梁付巍, 郭文文. 丁香酚基复合涂层阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(12): 115-122.
[10] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
[11] 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126.
[12] 邵彦峥, 孙将皓, 魏春艳, 吕丽华. 棉秆皮微晶纤维素/改性壳聚糖吸附纤维制备与性能[J]. 纺织学报, 2023, 44(08): 18-25.
[13] 蒋之铭, 张超, 张晨曦, 朱平. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(06): 161-167.
[14] 杨海富, 罗丽娟, 师建军, 马晓光, 郑振荣. 阻燃防水多功能涤纶篷布的制备及其性能[J]. 纺织学报, 2023, 44(06): 168-174.
[15] 狄友波, 陈燮阳, 阎智锋, 殷轩, 邱纯利, 马伟良, 张向兵. 壳聚糖-聚乙烯醇协同对籽用大麻浆粕铁离子的脱除[J]. 纺织学报, 2023, 44(06): 175-182.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!