纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 99-106.doi: 10.13475/j.fzxb.20230403901

• 纤维材料 • 上一篇    下一篇

聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸基复合导电纤维的制备及其性能

吴帆1,2,3(), 梁凤玉1, 肖奕葶1, 杨智博4, 王文婷1, 樊威1,2,3   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.西安工程大学 功能性纺织材料及制品教育部重点实验室, 陕西 西安 710048
    3.西安工程大学 柔性电子与智能纺织研究院, 陕西 西安 710048
    4.西安工程大学 电子信息学院, 陕西 西安 710048
  • 收稿日期:2023-04-17 修回日期:2023-10-31 出版日期:2024-08-15 发布日期:2024-08-21
  • 作者简介:吴帆(1990—),女,讲师,博士。研究方向为功能纺织材料和智能可穿戴传感器件。E-mail:fan.wu@xpu.edu.cn
  • 基金资助:
    陕西省自然科学基础研究计划项目(2022JQ-039);西安工程大学大学生创新训练计划项目(S202210709119);中国纺织工业联合会科技指导性项目(2020003);陕西数理基础科学研究项目(23JSQ020)

Preparation and properties of poly(3,4-ethylene supported dioxythiophene)/polystyrene sulfonic acid based composite conductive fibers

WU Fan1,2,3(), LIANG Fengyu1, XIAO Yiting1, YANG Zhibo4, WANG Wenting1, FAN Wei1,2,3   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Key Laboratory of Functional Textile Material and Product, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    3. Institute of Flexible Electronics and Intelligent Textile, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    4. School of Electronics and Information, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2023-04-17 Revised:2023-10-31 Published:2024-08-15 Online:2024-08-21

摘要:

为探究导电填料的掺杂方式对纤维结构和性能的影响机制,以聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸(PEDOT:PSS)为基体,银纳米线和石墨烯为导电填料,采用湿法纺丝技术制备了PEDOT:PSS基复合纤维,并采用聚氨酯(PU)对纤维进行封装。利用扫描电镜、电化学工作站、万能试验机、疲劳试验机、接触角测量仪对纤维的结构和性能进行表征,分别研究了纺丝液和凝固浴中导电填料对纤维结构和电学性能的影响。结果表明:采用凝固浴掺杂法易将导电填料附着于纤维表面,所制备复合纤维的电导率为(421.19±75.14) S/cm,相较于纯PEDOT:PSS纤维提高了22.4%;复合纤维表面亲水性强,静态接触角为62.9°;PU封装复合纤维具有优异的弯曲稳定性和耐水洗性能。

关键词: 导电纤维, 聚(3,4-乙撑二氧噻吩): 聚苯乙烯磺酸, 石墨烯, 银纳米线, 湿法纺丝, 导电性能

Abstract:

Objective Intelligent textiles with excellent serviceability and electrical performance require the use of high-performance conductive fibers. Wet-spun conductive fibers have great potential in various smart and functional yarns and fabrics. The doping of conductive fillers into fibers is an efficient way to improve fiber conductivity. However, the effect of conductive fillers dispersed into the coagulation bath on the electrical properties of wet-spun fibers was not sufficiently investigated. This research aims to study the effect of doping method and doping ratio of conductive fillers on the electrical properties of poly (3,4-ethylene supported dioxythiophene):polystyrene sulfonic acid(PEDOT:PSS)-based fibers.

Method Graphene and silver nanowires (Ag NWs) were used as conductive fillers, PEDOT:PSS was used as the matrix, deionized water was used as the solvent, isopropanol and dimethyl sulfoxide were used as coagulation bath to fabricate wet-spun PEDOT:PSS based composite fibers. Conductive fillers were directly mixed into the spinning solution or only dispersed into the coagulation bath. In addition, polyurethane (PU) encapsulated composite fiber was fabricated by the immersion method.

Results The wet-spun composite fibers showed uniform diameter. Based on the bidirectional diffusion of spinning liquid and coagulators, the graphene and Ag NWs dispersed in the coagulation bath were closely adsorbed onto the surface of the PEDOT:PSS fiber. The PEDOT:PSS fiber doped with Ag NWs into spinning solution (sample 4) demonstrated the highest electrical conductivity (577.98±157.33) S/cm, and PEDOT:PSS-based composite fiber (sample 7) fabricated by graphene and Ag NWs dispersed into the coagulation bath showed the second-highest conductivity (421.19±75.14) S/cm. Considering the cost in real production, composite fibers (sample 7) fabricated in the coagulation bath with conductive fillers were considered more feasible. The strain and stress of the composite fiber were 1.23% and 37 MPa, respectively. The resistance of the composite fiber showed gradual increasing during the tensile loading process. When the strain reaches 0.75%, the gauge factor (GF) of composite fiber was 0.18 and was increased to 3.12 until it breaks at 1.23%. The static contact angle of composite fiber was 62.9°. The electric conductivity of polyurethane (PU) encapsulated composite fibers illustrated a decrease by 10.7% compared with that of composite fiber, but demonstrated ability to withstand cyclic three-point bending 6 000 times after which the resistance change of the fiber was below 0.12%. After water washing, the resistance of the PU encapsulated composite fiber was increased. After three times of water washing (about 30 min), the conductivity of encapsulated fiber stabilizes and remained at 260 S/cm.

Conclusion In this work, PEDOT:PSS based composite fiber with high conductivity and good stability are prepared by the wet spinning method. By adjusting the doping ratio and methods of graphene and silver nanowires into PEDOT:PSS, the conductivity of composite fibers is improved. Dispersing conductive fillers into the coagulation bath is found to be more feasible to fabricate high-performance conductive composite fibers. The resulting composite fibers show promise for small strain sensing and the surface of composite fiber is hydrophilic. The PU-encapsulated composite fibers exhibit good bending resistance as well as the water washing resistance. After three times of water washing, the electrical performance of PU-encapsulated composite fiber becomes stable. The proposed methods provide a new approach for wet-spun conductive composite fibers to achieve high electric conductivity and good stability simultaneously.

Key words: conductive fiber, poly(3,4-ethylene supported dioxythiophene): polystyrene sulfonic acid, graphene, silver nanowire, wet spinning, conductive property

中图分类号: 

  • TQ342.8

图1

纺丝原液与凝固浴进行双扩散过程示意图"

图2

石墨烯和银纳米线的SEM照片"

图3

不同复合纤维的SEM照片"

图4

试样7的EDS能谱图"

图5

银纳米线和石墨烯掺杂凝固浴制备的PEDOT: PSS基复合纤维(试样7)的电流-电压曲线"

表1

各试样导电性能比较"

试样编号 电导率/(S·cm-1)
1 344.15±151.85
2 245.32±89.65
3 291.15±71.85
4 577.98±157.33
5 345.08±75.83
6 284.50±25.90
7 421.19±75.14

图6

采用银纳米线和石墨烯掺杂凝固浴制备得到的PEDOT:PSS基复合纤维(试样7)的拉伸性能和拉伸应变下的电学性能"

图7

采用银纳米线和石墨烯掺杂凝固浴制备得到的PEDOT:PSS基复合纤维(试样7)的疏水性能及聚氨酯封装复合纤维的电学性能"

图8

采用银纳米线和石墨烯掺杂凝固浴制备得到的PEDOT:PSS基复合纤维(试样7)经聚氨酯封装后的耐水洗性能"

[1] 刘旭华, 苗锦雷, 曲丽君, 等. 用于可穿戴智能纺织品的复合导电纤维研究进展[J]. 复合材料学报, 2021, 38(1): 67-83.
LIU Xuhua, MIAO Jinlei, QU Lijun, et al. Research progress of composite conductive fibers for wearable smart textiles[J]. Acta Materiae Compositae Sinica, 2021, 38(1): 67-83.
[2] 张文枭, 左杏薇, 曲丽君, 等. 基于导电纤维的柔性电子器件研究进展[J]. 复合材料学报, 2023, 40(2): 688-709.
ZHANG Wenxiao, ZUO Xingwei, QU Lijun, et al. Research progress of flexible electronic devices based on conductive fiber[J]. Acta Materiae Compositae Sinica, 2023, 40(2): 688-709.
[3] CHATTERJEE Kony, TABOR Jordan, GHOSH Tushar K. Electrically conductive coatings for fiber-based e-textiles[J]. Fibers, 2019. DOI:10.3390/fib7060051.
[4] BYUNGWOO Choi, JAEHONG Lee, HEETAK Han, et al. A highly conductive fiber with waterproof and self-cleaning properties for textile electronics[J]. ACS Applied Materials & Interfaces, 2018, 10(42): 36094-36101.
[5] 周歆如, 胡铖烨, 范梦晶, 等. 双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构[J]. 纺织学报, 2023, 44(2): 27-33.
ZHOU Xinru, HU Chengye, FAN Mengjing, et al. Electric field simulation of two-needle continuous water bath electrospinning and structure of nanofiber core-spun yarn[J]. Journal of Textile Research, 2023, 44(2): 27-33.
[6] WANG Xiaoxiong, YU Guifeng, ZHANG Jun, et al. Conductive polymer ultrafine fibers via electrospinning: preparation, physical properties and applications[J]. Progress in Materials Science, 2021. DOI:10.1016/j.pmatsci.2020.100704.
[7] KIM Seung-woo, KWON Sung-nam, NA Seok-in. Stretchable and electrically conductive polyurethane-silver/graphene composite fibers prepared by wet-spinning process[J]. Composites Part B: Engineering, 2019, 165(15): 573-581.
[8] WANG Yaqun, DING Yu, GUO Xuelin, et al. Conductive polymers for stretchable supercapacitors[J]. Nano Research, 2019, 12(9): 1978-1987.
doi: 10.1007/s12274-019-2296-9
[9] 庞雅莉, 孟佳意, 李昕, 等. 石墨烯纤维的湿法纺丝制备及其性能[J]. 纺织学报, 2020, 41(9): 1-7.
PANG Yali, MENG Jiayi, LI Xin, et al. Preparation of graphene fibers by wet spinning and fiber characterization[J]. Journal of Textile Research, 2020, 41(9): 1-7.
[10] 蒲海红, 贺芃鑫, 宋柏青, 等. 纤维素/碳纳米管复合纤维的制备及其功能化应用[J]. 纺织学报, 2023, 44(1): 79-86.
PU Haihong, HE Pengxin, SONG Baiqing, et al. Preparation of cellulose/carbon nanotube composite fiber and its functional applications[J]. Journal of Textile Research, 2023, 44(1): 79-86.
[11] TSEGHAI Granch Berhe, MENGISTIE Desalegn Alemu, MALENGIER Benny, et al. PEDOT:PSS-based conductive textiles and their applications[J]. Sensors, 2020. DOI:10.3390/s20071881.
[12] RUBENUBEN Sarabia-riquelme, MARYAM Shah, JOSEPH W Brill, et al. Effect of drawing on the electrical, thermoelectrical, and mechanical properties of wet-spun PEDOT:PSS fibers[J]. ACS Applied Polymer Materials, 2019, 1(8): 2157-2167.
[13] LI Mufang, ZENG Fanjia, LUO Mengying, et al. Synergistically improving flexibility and thermoelectric performance of composite yarn by continuous ultrathin PEDOT:PSS/DMSO/ionic liquid coating[J]. ACS Applied Materials & Interfaces, 2021, 13(42): 50430-50440.
[14] IZARRA Ambroise De, PARK Seongjin, LEE Jinhee, et al. Ionic liquid designed for PEDOT:PSS conductivity enhancement[J]. Journal of the American Chemical Society, 2018, 140(16): 5375-5384.
doi: 10.1021/jacs.7b10306 pmid: 29633844
[15] ZHANG Jizhen, SEYEDI Neyedin Shayan, QIN Si, et al. Fast and scalable wet-spinning of highly conductive PEDOT:PSS fibers enables versatile applications[J]. Journal of Materials Chemistry A, 2019, 7(11): 6401-6410.
doi: 10.1039/c9ta00022d
[16] FENG Danyang, WANG Peng, WANG Mingxu, et al. A facile route toward continuous wet-spinning of PEDOT: PSS fibers with enhanced strength and electroconductivity[J]. Fibers and Polymers, 2021, 22: 1491-1495.
[17] JIN Jo Young, YOUNG Kim Soo, HUN Hyun Jeong, et al. Fibrillary gelation and dedoping of PEDOT:PSS fibers for interdigitated organic electrochemical transistors and circuits[J]. npj Flexible Electronics, 2022(1): 330-340.
[18] 刘玲, 周彬, 周红涛. PEDOT/PSS质量分数对纺丝液流变性能及导电纤维可纺性的影响[J]. 塑料工业, 2022, 50(2): 174-178.
LIU Ling, ZHOU Bin, ZHOU Hongtao. Effect of mass fraction of PEDOT/PSS on rheological properties of spinning fluid and spinnability of conducting fibers[J]. Plastic Industry, 2022, 50(2): 174-178.
[19] LIU Siqi, LI Hui, HE Chaobin. Simultaneous enhancement of electrical conductivity and seebeck coefficient in organic thermoelectric SWNT/PEDOT:PSS nanocomposites[J]. Carbon, 2019, 149: 25-32.
doi: 10.1016/j.carbon.2019.04.007
[20] GAO Qiang, WANG Mingxu, KANG Xinyuan, et al. Continuous wet-spinning of flexible and water-stable conductive PEDOT:PSS/PVA composite fibers for wearable sensors[J]. Composites Communications, 2020, 17: 134-140.
[21] JALILI Rouhollah, RAZAL Joselito M, WALLACE Gordon G. Wet-spinning of PEDOT:PSS/functionalized-SWNTs composite: a facile route toward production of strong and highly conducting multifunctional fibers[J]. Scientific Reports, 2013.DOI:10.1038/srep03438.
[1] 胥家辉, 郭肖青, 王伟, 王怀芳, 张传杰, 宫兆庆. 海藻酸钠/纳米蒙脱土纤维制备及其增强增韧机制[J]. 纺织学报, 2024, 45(06): 16-22.
[2] 陈锟, 许晶莹, 郑怡倩, 李加林, 洪兴华. 丝网印刷还原氧化石墨烯改性蚕丝织物的导电与电热性能[J]. 纺织学报, 2024, 45(03): 122-128.
[3] 闫鹏翔, 陈富星, 刘红, 田明伟. 柔性力感知电子织物的制备及其人体运动监测系统构建[J]. 纺织学报, 2024, 45(02): 59-66.
[4] 谷金峻, 魏春艳, 郭紫阳, 吕丽华, 白晋, 赵航慧妍. 棉秆皮微晶纤维素/改性氧化石墨烯阻燃纤维的制备及其性能[J]. 纺织学报, 2024, 45(01): 39-47.
[5] 艾靓雯, 卢东星, 廖师琴, 王清清. 基于原位冷冻界面聚合法的纱线传感器制备及其应变传感性能[J]. 纺织学报, 2024, 45(01): 74-82.
[6] 管图祥, 吴健, 暴宁钟. 微流控纺丝制备石墨烯纤维基柔性超级电容器的研究进展[J]. 纺织学报, 2023, 44(12): 205-215.
[7] 贾丽萍, 黎明, 李威龙, 冉建华, 毕曙光, 李时伟. 基于长银纳米线的应变传感与电热双功能包芯纱的制备及其性能[J]. 纺织学报, 2023, 44(10): 113-119.
[8] 李璟孜, 娄蒙蒙, 黄世燕, 李方. 基于光热利用的金属有机骨架/石墨烯复合膜对印染废水的再生处理[J]. 纺织学报, 2023, 44(09): 116-123.
[9] 徐瑞东, 王航, 曲丽君, 田明伟. 聚乳酸非织造基材触摸传感电子织物制备及其性能[J]. 纺织学报, 2023, 44(09): 161-167.
[10] 何铠君, 沈加加, 刘国金. 石墨烯改性蚕丝的制备方法及其应用研究进展[J]. 纺织学报, 2023, 44(09): 223-231.
[11] 辛华, 李阳帆, 罗浩. 复合改性氧化石墨烯接枝水性聚氨酯的制备及其性能[J]. 纺织学报, 2023, 44(08): 133-142.
[12] 关振虹, 李丹, 宋金苓, 冷向阳, 宋西全. 易染间位芳纶的制备及其性能[J]. 纺织学报, 2023, 44(06): 28-32.
[13] 狄纯秋, 郭静, 管福成, 相玉龙, 单继成. 双金属离子交联海藻酸盐复合相变纤维的制备与性能[J]. 纺织学报, 2023, 44(05): 54-62.
[14] 黄锦波, 邵灵达, 祝成炎. 炭化三维间隔棉织物的制备及其电加热性能[J]. 纺织学报, 2023, 44(04): 139-145.
[15] 李阳, 封严. 石墨烯基新型抗菌材料的研究进展[J]. 纺织学报, 2023, 44(04): 230-237.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!