纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 81-88.doi: 10.13475/j.fzxb.20230405001

• 纤维材料 • 上一篇    下一篇

聚醚酯弹性纤维的制备及其结构与性能

张梦茹, 王灿, 肖汪洋, 廖梦蝶, 王秀华()   

  1. 浙江理工大学 纺织纤维材料与加工技术国家地方联合工程实验室, 浙江 杭州 310018
  • 收稿日期:2023-04-24 修回日期:2024-05-14 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 王秀华(1964—),女,教授级高级工程师。研究方向为改性聚酯合成与差别化纤维加工。E-mail:wxiuhua@126.com
  • 作者简介:张梦茹(1999—),女,硕士生。主要研究方向为聚醚酯弹性纤维的制备与性能。
  • 基金资助:
    浙江省现代纺织技术创新中心定向项目(CXZX2022010HD)

Preparation of polyether ester elastic fiber and its structure and properties

ZHANG Mengru, WANG Can, XIAO Wangyang, LIAO Mengdie, WANG Xiuhua()   

  1. National Engineering Laboratory for Textile Fiber Materials and Processing Technology, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2023-04-24 Revised:2024-05-14 Published:2024-08-15 Online:2024-08-21

摘要:

为研究牵伸倍数及热定形温度对聚醚酯弹性纤维性能的影响,采用卧式微量单孔挤出机制备了聚醚酯初生纤维及其牵伸丝。采用X射线衍射仪、声速取向仪、电子单纱强力机、纱线强伸度仪等对纤维的结晶结构、取向结构、力学性能、回弹性和收缩性能进行测试与分析。结果表明:当热定形温度为100 ℃时,随着牵伸倍数的增加,聚醚酯弹性纤维的结晶度、取向度、沸水收缩率和干热收缩率均呈上升趋势,断裂强度由1.44 cN/dtex增加至2.68 cN/dtex,断裂伸长率由179.9%下降到31.0%,在牵伸5倍时定伸长20%的弹性回复率可达到96.2%;当牵伸5倍时,随着热定形温度的升高,聚醚酯弹性纤维的结晶度增加,取向度、沸水收缩率及干热收缩率呈下降趋势,断裂强度与弹性回复率变化不大,断裂伸长率先升高后降低,热定形温度为140 ℃时的断裂强度达2.49 cN/dtex,定伸长20%的弹性回复率达到96.6%。

关键词: 聚醚酯弹性纤维, 结晶, 取向, 弹性回复率, 热收缩性能, 热定形

Abstract:

Objective To improve the current situation of single variety of elastic fibers in the field of textiles and apparel, thermoplastic polyether ester elastic (TPEE) fibers were prepared by melt spinning, aiming to achieve advantages of high elasticity, low hysteresis and easy processing. This research was set to study the effects of drafting and heat setting process on the properties of TPEE fibers in order to provide support for the development and application of the fibers.

Method Thermoplastic polyether ester fibers were prepared by horizontal micro single-hole extruder, then drafted and heat-set to form drafted fibers. The crystallization properties, orientation properties, mechanical properties, elastic recovery properties and thermal shrinkage properties of TPEE fibers were tested and analyzed by X-ray diffractometer, sound velocity orientation instrument, and single yarn tesnsile tester.

Results The effects of drafting ratio and heat setting temperature on the structure and properties of TPEE fibers were investigated by varying the drafting ratio and heat setting temperature. The results showed that when the heat setting temperature was 100 ℃ and the drafting ratio was increased from 3 times to 6 times, the crystallinity and orientation degree of TPEE fibers were increased with the increase of drafting ratio. With the increase of drafting ratio, the breaking strength of TPEE fibers was increased from 1.44 cN/dtex to 2.68 cN/dtex, the elongation at break decreased from 179.9% to 31.0%, and the elastic recovery rate initially increased and then decreased. When the drafting ratio was 5 times, the elastic recovery rate reached the maximum value of 96.2%. When the drafting ratio changed from 3 times to 6 times, the boiling water shrinkage rate was increased from 15.9% to 27.4%, and the dry heat shrinkage rate increased from 14.4% to 28.2%. With a 5 times drawing ratio, when the heat setting temperature was increased from 80 ℃ to 140 ℃, the crystallinity of TPEE fibers was increased and the total orientation degree of the TPEE fibers was decreased, the breaking strength and elastic recovery rate did not change significantly, and the elongation at break was initially increased and then decreased. At 140 ℃ heat-setting temperature, the breaking strength reached 2.49 cN/dtex and the elastic recovery rate reached 96.6% compared to other heat-setting temperatures. Notably, the boiling water shrinkage rate was dropped from 30.5% to 19.4%, and the dry heat shrinkage rate was decreased from 29.8% to 20.1% under the same heat-setting temperature (80-140 ℃), indicating a significant enhancement in the dimensional stability of the fibers.

Conclusion With the increase of drafting ratio, the mechanical properties of TPEE fibers demonstrated enhancement, while the dimensional stability of which was significantly reduced. The elastic recovery properties were initially increased and then dropped under the same conditions, and the elastic recovery rate of the TPEE fibers was up to 96.2% as the draft ratio increased to 5 times. With the increase of heat-setting temperature, the dimensional stability of TPEE fibers was obviously enhanced, while the mechanical properties and elastic recovery properties of TPEE fibers were almost unaffected, and the elastic recovery rate was remained above 96.0%. This work provides more raw material choices for the application of TPEE elastic fibers in the deformations textiles.

Key words: polyether ester elastic fiber, crystallization, orientation, elastic recovery rate, thermal shrinkage property, heat setting

中图分类号: 

  • TS102.6

图1

聚醚酯弹性纤维制备流程"

表1

试样工艺参数"

试样编号 牵伸倍数 热定形温度/℃
A0
A1 3 100
A2 4 100
A3 5 100
A4 6 100
A5 5 80
A6 5 120
A7 5 140

图2

不同牵伸倍数聚醚酯纤维的一维WAXD谱图"

图3

不同牵伸倍数聚醚酯纤维的结晶度 与相分离程度"

图4

不同牵伸倍数聚醚酯纤维的二维X射线取向衍射谱图"

图5

不同牵伸倍数聚醚酯纤维一维X射线取向衍射谱图"

表2

不同牵伸倍数聚醚酯纤维的晶区取向度及声速值"

试样编号 晶区取向度/% 声速值/(km·s-1)
A1 92.02 0.87
A2 93.96 0.94
A3 94.05 1.12
A4 94.42 1.18

表3

不同牵伸倍数聚醚酯纤维的力学性能"

试样
编号
断裂伸长
率/%
断裂强度/
(cN·dtex-1)
弹性回复
率/%
A1 179.9 1.44 88.5
A2 96.6 1.77 93.7
A3 58.5 2.43 96.2
A4 30.1 2.68 94.6

表4

不同牵伸倍数聚醚酯纤维的热收缩性能"

试样编号 沸水收缩率 干热收缩率
A1 15.9 14.4
A2 20.5 19.1
A3 25.0 24.9
A4 27.4 28.2

图6

不同热定形温度聚醚酯纤维的一维WAXD谱图"

图7

不同热定形温度聚醚酯纤维的结晶度及相分离程度"

图8

不同热定形温度聚醚酯纤维的二维X射线取向衍射谱图"

图9

不同热定形温度聚醚酯纤维的一维X射线取向衍射图"

表5

不同热定形温度聚醚酯纤维的晶区取向度与声速值"

试样编号 晶区取向度/% 声速值/(km·s-1)
A5 93.08 1.16
A3 94.05 1.12
A6 94.41 1.08
A7 94.45 1.07

表6

不同热定形温度聚醚酯纤维的力学性能"

试样
编号
断裂强度/
(cN·dtex-1)
断裂伸长
率/%
弹性回复
率/%
A5 2.49 47.4 96.0
A3 2.43 58.5 96.2
A6 2.48 51.9 96.1
A7 2.49 48.7 96.6

表7

不同热定形温度聚醚酯纤维的热收缩性能"

试样编号 沸水收缩率 干热收缩率
A5 30.5 29.8
A3 25.0 24.9
A6 22.4 22.8
A7 19.4 20.1
[1] LU Jiawei, ZHANG Hong, CHEN Yuemiao, et al. Effect of chain relaxation on the shrinkage behavior of TPEE foams fabricated with supercritical CO2[J]. Polymer, 2022. DOI:10.1016/j.polymer.2022.125262.
[2] SU H J, JEONG J E, KIM S, et al. Hardness modulated thermoplastic poly(ether ester) elastomers for the automobile weather-strip application[J]. Polymers, 2021. DOI:10.3390/polym13040525.
[3] JIANG, Ruichen, YAO Yichong, LIU Shun, et al. Preparation and characterization of high melt strength thermoplastic polyester elastomer with different topological structure using a two-step functional group reaction[J]. Polymer, 2019. DOI:10.1016/j.polymer.2019.121628.
[4] YU Jinchao, YAN Tingwei, JI Hong, et al. The evolution of structure and performance in copolyether-ester fibers with different heat-treatment process[J]. Journal of Polymer Research, 2019. DOI:10.1007/s10965-019-1714-8.
[5] 刘森林, 闫婷伟, 南建举, 等. 不同软硬段含量的聚醚酯纤维结构与性能的关系[J]. 合成纤维, 2017, 46(11): 1-5, 45.
LIU Senlin, YAN Tingwei, NAN Jianju, et al. The relationship between the structures and properties of polyether-ester fibers with various hard/soft segment contents[J]. Synthetic Fiber in China, 2017, 46(11): 1-5, 45.
[6] 宋晓芳, 李光. 聚醚酯弹性纤维的改性研究[J]. 合成技术及应用, 2007, 80(4): 8-11.
SONG Xiaofang, LI Guang. Modified properties research of poly(ether ester) elastic fibers[J]. Synthetic Technology and Application, 2007, 80(4): 8-11.
[7] 闫婷伟, 于金超, 张玉梅, 等. 不同纺丝速度下聚醚酯纤维结构与性能的关系[J]. 合成纤维, 2016, 45(4): 5-10.
YAN Tingwei, YU Jinchao, ZHANG Yumei, et al. Structure and properties of copolyether-ester fiber under different spinning speed[J]. Synthetic Fiber in China, 2016, 45(4): 5-10.
[8] 邓佳. 热塑性聚酯弹性体的结构性能研究及其单丝的制备[D]. 上海: 东华大学, 2012: 44.
DENG Jia. The structure and properties of thermoplastic polyester elastomer and its monofilament[D]. Shanghai: Donghua University, 2012: 44.
[9] 莫志深, 张宏放. 晶态聚合物结构和X射线衍射[M]. 北京: 科学出版社, 2010: 234.
MO Zhishen, ZHANG Hongfang. Crystalline polymer structure and X-ray diffraction[M]. Beijing: Science Press, 2010: 234.
[10] BEDJAOUI S, DOULACHE N, KHEMICI M W, et al. XRD, Raman and photoluminescence study of gamma-irradiated PBT[J]. Applied Physics A, 2022. DOI:10.1007/s00339-022-05498-w.
[11] ZHANG Jiacheng, LI Yonggang, MA Gang, et al. Study of the microstructure formation mechanisms of poly(ether-ether-ketone) monofilaments via melt spinning[J]. Journal of Applied Polymer Science, 2023. DOI:10.1002/app.53365.
[12] 束永健. PPDO/PLLA皮芯复合单丝的制备与性能研究[D]. 杭州: 浙江理工大学, 2018: 16.
SHU Yongjian. The preparation of PPDO/PLLA sheath-core composite monofilaments and the study of performance[D]. Hangzhou: Zhejiang Sci-Tech University, 2018: 16.
[13] 王鹏. 聚对苯二甲酸-2,5-呋喃二甲酸乙二醇共聚酯(PEFT)熔融可纺性及纤维结构与性能研究[D]. 宁波: 宁波大学, 2018: 39.
WANG Peng. Study on melt-spinnability, fiber structure and properties of poly(ethylene terephthalate-co-ethylene 2,5 furandicarboxylate) copolyesters[D]. Ningbo: Ningbo University, 2018: 39.
[14] 何曼君. 高分子物理[M]. 上海: 复旦大学出版社, 2007: 185.
HE Manjun. Polymer physics[M]. Shanghai: Fudan University Press, 2007: 185.
[15] 闫静静, 肖长发, 王纯, 等. 拉伸过程中聚偏氟乙烯纤维晶体结构变化[J]. 高分子学报, 2019, 50(7): 752-760.
YAN Jingjing, XIAO Changfa, WANG Chun, et al. Crystalline structure changes of poly(vinylidene fluoride) fibers during stretching process[J]. Acta Polymerica Sinica, 2019, 50(7): 752-760.
doi: 10.11777/j.issn1000-3304.2018.18261
[16] 马艳丽. 聚丁二酸丁二醇-共-对苯二甲酸丁二醇共聚酯(PBST)纤维的热定型研究[D]. 上海: 东华大学, 2010: 13.
MA Yanli. Study on heat-setting of poly(butylene succinate-co-butylenne terephthalate) (PBST) fibers[D]. Shanghai: Donghua University, 2010: 13.
[17] 沈新元. 高分子材料加工原理[M]. 北京: 中国纺织出版社, 2014: 188.
SHEN Xinyuan. Polymer material processing principle[M]. Beijing: China Textile & Apparel Press, 2014: 188.
[18] WANG P, HUANG W, ZHANG Y, et al. An evoluted bio-based 2,5-furandicarboxylate copolyester fiber from poly(ethylene terephthalate)[J]. Journal of Polymer Science, 2020, 58 (2): 320-329.
[19] 陈耶福. 立构复合聚乳酸纤维的制备与结构性能研究[D]. 上海: 东华大学, 2022: 54.
CHEN Yefu. Study on preparation, structure and properties of stereo composite polylactic acid fiber[D]. Shanghai: Donghua University, 2022: 54.
[1] 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141.
[2] 朱维维, 舒伟, 顾文娟. 负载不同极性药物对粘胶织物结构和性能的影响[J]. 纺织学报, 2024, 45(04): 136-141.
[3] 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19.
[4] 聂文琪, 许帅, 高俊帅, 方斌, 孙江东. 聚(3-羟基丁酸-3-羟基戊酸酯)改性涤纶长丝的降解性能[J]. 纺织学报, 2023, 44(09): 35-42.
[5] 张颖, 宋明根, 姬洪, 陈康, 张先明. 热定形工艺对高强型聚酯工业丝结构性能的影响[J]. 纺织学报, 2023, 44(09): 43-51.
[6] 黄伟, 张嘉煜, 张东, 程春祖, 李婷, 吴伟. Lyocell纤维性能表征及其对比分析[J]. 纺织学报, 2023, 44(03): 42-48.
[7] 刘彦麟, 顾伟文, 魏建斐, 王文庆, 王锐. 耐热聚乳酸材料的研究进展[J]. 纺织学报, 2022, 43(06): 180-186.
[8] 徐晓彤, 江振林, 郑钦超, 朱科宇, 王朝生, 柯福佑. 导热结构对聚对苯二甲酸乙二醇酯非等温结晶行为的影响[J]. 纺织学报, 2022, 43(03): 44-49.
[9] 邱志成, 李鑫, 李志勇, 王颖, 金剑, 武术方. 原位法连续聚合聚酯/炭黑体系的结构与性能[J]. 纺织学报, 2021, 42(10): 15-21.
[10] 陈康, 蒋权, 姬洪, 张阳, 宋明根, 张玉梅, 王华平. 高强型聚酯工业丝在不同温度下的蠕变断裂机制[J]. 纺织学报, 2020, 41(11): 1-9.
[11] 陈咏, 王晶晶, 王朝生, 顾栋华, 乌婧, 王华平. 低聚物对生物基聚对苯二甲酸丙二醇酯结晶性能的影响[J]. 纺织学报, 2020, 41(10): 1-6.
[12] 管福成, 郭静, 吕丽华, 谭倩, 宋敬星, 张欣. 聚乙烯醇/磷虾蛋白纤维的氢键作用机制及其性能[J]. 纺织学报, 2020, 41(10): 7-13.
[13] 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14.
[14] 赵亚茹, 肖红, 陈剑英. 不锈钢短纤维/棉包覆氨纶纱的弹性与电学性能[J]. 纺织学报, 2020, 41(03): 45-50.
[15] 李明明, 陈烨, 李夏, 王华平. 纺丝工艺对并列复合聚酯纤维性能的影响[J]. 纺织学报, 2019, 40(12): 16-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!