纺织学报 ›› 2024, Vol. 45 ›› Issue (04): 111-119.doi: 10.13475/j.fzxb.20230405701

• 染整工程 • 上一篇    下一篇

高疏水性双面结构生色棉织物的一步法制备

向娇娇1, 柳浩1, 欧阳申珅2, 马万彬1, 柴丽琴1, 周岚1,3, 邵建中1, 刘国金1,3,4()   

  1. 1.浙江理工大学 先进纺织材料与制备技术教育部重点实验室, 浙江 杭州 310018
    2.中国科学院宁波材料技术与工程研究所, 浙江 宁波 315000
    3.浙江省现代纺织技术创新中心, 浙江 绍兴 312000
    4.省部共建生物多糖纤维成形与生态纺织国家重点实验室(青岛大学), 山东 青岛 266071
  • 收稿日期:2023-04-28 修回日期:2024-01-13 出版日期:2024-04-15 发布日期:2024-05-13
  • 通讯作者: 刘国金(1990—),副教授,博士。主要研究方向为纺织品结构生色。E-mail: guojin900618@163.com。
  • 作者简介:向娇娇(1998—),女,硕士生。主要研究方向为纺织品结构生色、纺织品后整理。
  • 基金资助:
    国家自然科学基金项目(52003242);省部共建生物多糖纤维成形与生态纺织国家重点实验室开放课题项目(KFKT202216)

Preparation of cotton fabrics with both double-sided structural colored effect and high hydrophobicity by one-step method

XIANG Jiaojiao1, LIU Hao1, OUYANG Shenshen2, MA Wanbin1, CHAI Liqin1, ZHOU Lan1,3, SHAO Jianzhong1, LIU Guojin1,3,4()   

  1. 1. Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang 315000, China
    3. Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing, Zhejiang 312000, China
    4. State Key Laboratory of Bio-Fibers and Eco-Textiles(Qingdao University), Qingdao, Shandong 266071, China
  • Received:2023-04-28 Revised:2024-01-13 Published:2024-04-15 Online:2024-05-13

摘要:

为能简便、快速地得到兼具双面结构色效果和高疏水性的棉织物,以聚甲基丙烯酸三氟乙酯(PTFEMA)胶体微球为结构单元,利用浸轧-焙烘一步法将其负载于棉织物上构筑高疏水性光子晶体生色结构。分析PTFEMA胶体微球的基本性能,探究PTFEMA胶体微球组装液质量分数对棉织物结构生色效果和疏水性的影响,并提出结构生色棉织物的疏水机制。结果表明:PTFEMA胶体微球粒径均一,单分散性优异,适宜于构筑光子晶体;当组装液质量分数为20%~30%时,通过浸轧-焙烘一步法便可制备得到结构色明显、水接触角为140°左右的棉织物;PTFEMA胶体微球因自带含—CF3基团而具有疏水性,加之光子晶体阵列增加了棉织物的粗糙度,双重作用下使得结构生色棉织物具备高疏水性。

关键词: 棉织物, 光子晶体, 结构生色, 高疏水, 一步法, 功能性纺织品

Abstract:

Objective Cotton fabrics are widely used in the textile industry due to their excellent moisture absorption and breathability. However, the hydrophilic properties of cotton fabrics may limit their application in some hydrophobic and anti-fouling clothing. The coloring and hydrophobic effects of cotton fabrics can be achieved by a one-step method, which uses hydrophobic colloidal microspheres as the basic unit of photonic crystals to construct photonic crystals with both structural colored effect and high hydrophobicity on cotton fabric. This approach not only helps to reduce the processing process, but also generates new ideas for the development of multifunctional integrated cotton fabrics.

Method In this work, hydrophobic poly(trifluoroethyl methacrylate)(PTFEMA)colloidal microspheres were prepared by soap-free emulsion polymerization method. The microspheres were used as the building blocks of photonic crystals. The cotton fabric with double-sided structural colored effect and high hydrophobicity was obtained by a one-step method of dipping and baking.

Results The size distribution of PTFEMA colloidal microspheres synthesized by soap-free emulsion polymerization was found uniform, the particle dispersion index (PDI) was less than 0.08, the colloidal microspheres had hydrophobic functional group-CF3, and the water contact angle can reach 98.65°. When the mass fraction of PTFEMA colloidal microsphere assembly solution was 20%-30%, the cotton fabrics with obvious color and strong hydrophobicity were able to be prepared via one step method of dipping and baking. The photonic crystal structural colored cotton fabrics showed iridescent effect, and the water contact angle reached about 140°. The results showed that the high hydrophobicity of cotton fabrics with photonic crystal structural coloration was mainly caused by two aspects, i.e., the fluorine-containing group-CF3 carried by the PTFEMA microsphere, and the roughness of the cotton fabrics increased by the photonic crystal structural layer constructed by the PTFEMA microsphere.

Conclusion Photonic crystals composed of PTFEMA colloidal microspheres with excellent monodispersion were constructed by the one-step method of dipping and baking, facilitating the color enhancement and high hydrophobicity of double-sided structure of cotton fabrics. The effect of mass fraction of PTFEMA microsphere assembly solution on the structure color and hydrophobicity of cotton fabric was studied, and the results show that 20%-30% microsphere assembly solution is suitable for forming cotton fabric with obvious structural color and high hydrophobicity. In addition, the hydrophobic mechanism of cotton fabric with photonic crystal structural coloration is discussed. It is found that the hydrophobic group-CF3 carried by the PTFEMA colloidal microspheres, and the photonic crystal array constructed by the microspheres increase the roughness of the cotton fabric, which results in the high hydrophobicity of the structure. Therefore, the combination of the one-step method of dipping and baking, cotton fabric and photonic crystal structure can achieve the structure color of cotton fabrics and provides strategic support for the preparation of highly hydrophobic cotton fabric.

Key words: cotton fabric, photonic crystal, structural coloration, high hydrophobicity, one step method, functional textile

中图分类号: 

  • TS101

图1

单分散PTFEMA胶体微球的合成示意图"

图2

兼具双面结构色效果和高疏水性的棉织物制备示意图"

图3

多角度分光光度仪在2个不同光源下测量样品的示意图"

图4

5种PTFEMA胶体微球的粒径分布图"

表1

5种PTFEMA胶体微球的单分散指数"

粒径/nm PDI值
361.3 0.015
310.7 0.049
267.2 0.065
229.8 0.027
197.6 0.021

图5

PTFEMA胶体微球的FESEM照片"

图6

PTFEMA胶体微球的红外光谱图及水接触角测试图"

图7

不同质量分数组装液制备的结构生色棉织物的数码照片"

图8

不同质量分数组装液下结构生色棉织物的反射率曲线"

图9

结构生色棉织物的虹彩效应图片及反射率等高图"

图10

不同质量分数组装液下制备的结构生色棉织物的水接触角测试图"

图11

20%组装液制备的结构生色棉织物的数码照片和水接触角测试图"

图12

不同粒径光子晶体结构生色棉织物的数码照片和对应的水接触角测试图"

图13

原棉织物和结构生色棉织物表面F元素的分布"

图14

原棉织物和结构生色棉织物的FESEM照片"

图15

结构生色棉织物上光子晶体的AFM图像"

图16

结构生色棉织物高疏水机制示意图"

[1] 刘国金. 纺织基材上纳米微球自组装仿生光子晶体结构生色研究[D]. 杭州: 浙江理工大学,2017:204.
LIU Guojin. Study on the structural coloration of biomimetic photonic crystals on textile substrates by self-assembly of nanospheres[D]. Hangzhou: Zhejiang Sci-Tech University, 2017:204.
[2] LI S, XIAO Y S, SHAN G H, et al. Efficient preparation of single-sided structural color fabrics with asymmetric wettability, angle-dependence and pattern ability based on liquid photonic crystals[J]. Dyes and Pigments, 2023. DOI: 10.1016/j.dyepig.2023.111302.
[3] ZHU K M, FANG C Q, PU M Y, et al. Recent advances in photonic crystal with unique structural colors: a review[J]. Journal of Materials Science and Technology, 2023, 141: 78-99.
[4] MA W B, LIU H, HE W Y, et al. Preparation of acrylic yarns with durable structural colors based on stable photonic crystals[J]. ACS Omega, 2022, 7(44): 39750-39759.
doi: 10.1021/acsomega.2c03672 pmid: 36385851
[5] INOUE T, MORITA R, NIGO K, et al. Self-evolving photonic crystals for ultrafast photonics[J]. Nature Communications, 2023, 14(1): 50-50.
doi: 10.1038/s41467-022-35599-2 pmid: 36707512
[6] LIU G J, HAN P S, CHAI L Q, et al. Fabrication of cotton fabrics with both bright structural colors and strong hydrophobicity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020. DOI: 10.1016/j.colsurfa.2020.124991.
[7] LIU H, ZHANG Y X, JIN M T, et al. Preparation of carbon fiber substrates with structural colors based on photonic crystals[J]. Dyes and Pigments, 2022. DOI: 10.1016/j.dyepig.2022.110338.
[8] ZHANG L, SUN L, ZHANG Z, et al. Bioinspired superhydrophobic surface by hierarchically colloidal assembling of microparticles and colloidal nanopar-ticles[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2020.125008.
[9] WU S T, YANG F, ZHAO C Q, et al. Rapid fabrication of SiO2-PHEMA photonic crystal hydrogel composite microspheres[J]. Dyes and Pigments, 2022. DOI: 10.1016/j.dyepig.2022.110089.
[10] LI S, XIAO Y S, SHAN G H, et al. Rapid preparation of structural color coatings on flexible textiles by simple vacuum-assisted filtration self-assembly[J]. Physica E: Low-Dimensional Systems and Nanostructures, 2022. DOI: 10.1016/j.physe.2022.115424.
[11] FU Y, DENG L B, L X, et al. Construction of amorphous photonic crystal coated fabrics with wash resistance and antifouling performance[J]. Cellulose, 2023, 30(6): 4057-4070.
[12] LIU G J, ZHOU L, WU Y, et al. Optical properties of three-dimensional P(St-MAA) photonic crystals on polyester fabrics[J]. Optical Materials, 2015, 42: 72-79.
[13] KOZLOW A A, AKSENOV A S, BOLSHAKOV E S, et al. Colloidal photonic crystals with controlled morphology[J]. Russian Chemical Bulletin, 2022, 71(10): 2037-2051.
[14] FUDOUZI H. Fabricating high-quality opal films with uniform structure over a large area[J]. Journal of Colloid and Interface Science, 2004, 275(1): 277-283.
pmid: 15158410
[15] SCHRODEN R C, ALDAOUS M, AND C F B, et al. Optical properties of inverse opal photonic crystals[J]. Chemistry of Materials, 2002, 14(8): 3305-3315.
[16] WATERHOUS G I N, WATERLAND M R. Opal and inverse opal photonic crystals: fabrication and characterization[J]. Polyhedron, 2007, 26(2): 356-368.
[1] 胡自强, 骆晓蕾, 魏璐琳, 刘琳. 植酸/壳聚糖对涤纶/棉混纺织物的协同阻燃整理[J]. 纺织学报, 2024, 45(04): 126-135.
[2] 李丽丽, 袁亮, 唐雨霞, 杨文菊, 王浩. 聚多巴胺/壳聚糖改性棉织物的茶色素染色及其抗菌和防紫外线性能[J]. 纺织学报, 2024, 45(03): 106-113.
[3] 田博阳, 王向泽, 杨湙雯, 吴晶. 非对称结构纤维膜的制备及其热调控性能[J]. 纺织学报, 2024, 45(02): 11-20.
[4] 孙浪涛, 杨宇珊. 调温抗菌微胶囊的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(02): 171-178.
[5] 陈顺, 钱坤, 梁付巍, 郭文文. 丁香酚基复合涂层阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(12): 115-122.
[6] 陈贝, 任李培, 肖杏芳. 铽-金属有机框架改性棉织物的制备及其pH值探测性能[J]. 纺织学报, 2023, 44(12): 123-129.
[7] 郑贤宏, 唐金好, 李长龙, 王炜. 中空磁性Fe3O4纳米球/MXene复合棉织物的制备及其电磁屏蔽性能[J]. 纺织学报, 2023, 44(11): 142-150.
[8] 王露砚, 张彩宁, 赵倩倩, 马志豪, 王煦漫. 紫外光/氨气双重响应超疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(11): 160-166.
[9] 钱耀威, 殷连博, 李家炜, 杨晓明, 李耀邦, 戚栋明. 聚乙烯基膦酸/多乙烯多胺层层自组装阻燃棉织物的制备及其性能[J]. 纺织学报, 2023, 44(09): 144-152.
[10] 帅旗, 孙硕, 成世杰, 张宏伟, 左丹英. 氮硼掺杂碳量子点/异氰酸酯型微胶囊复合整理棉织物及其防紫外线性能[J]. 纺织学报, 2023, 44(08): 126-132.
[11] 郭玉秋, 钟毅, 徐红, 毛志平. 拼混活性染料染色多组分定量分析方法[J]. 纺织学报, 2023, 44(07): 141-150.
[12] 陈家辉, 梁跃耀, 陈妮, 房宽峻. 棉织物喷墨印花打印方式的调控及其应用[J]. 纺织学报, 2023, 44(07): 159-166.
[13] 谭家玲, 刘佳音, 于伟东, 殷允杰, 王潮霞. 基于SiO2微胶囊的多色谱温敏变色棉织物制备及其性能[J]. 纺织学报, 2023, 44(07): 167-174.
[14] 王伟, 吴嘉欣, 张晓云, 张传杰, 宫兆庆. 制浆用废旧棉织物的脱色性能及其机制[J]. 纺织学报, 2023, 44(07): 175-183.
[15] 胡安钟, 王成成, 钟子恒, 张丽平, 付少海. 氮化硼纳米片掺杂型快速响应温致变色织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 164-170.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!