纺织学报 ›› 2024, Vol. 45 ›› Issue (08): 107-115.doi: 10.13475/j.fzxb.20230501501

• 纤维材料 • 上一篇    下一篇

石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能

王永政1, 黄林涛1,2, 宋付权1,3()   

  1. 1.浙江海洋大学 石油化工与环境学院, 浙江 舟山 316022
    2.宁波杉杉硅基材料有限公司, 浙江 宁波 315100
    3.常州大学 石油与天然气工程学院, 江苏 常州 213000
  • 收稿日期:2023-05-05 修回日期:2023-11-03 出版日期:2024-08-15 发布日期:2024-08-21
  • 通讯作者: 宋付权(1970—),男,教授,博士。主要研究方向为非常规油气藏渗流机制和采收率提高技术。E-mail:songfuquan@cczu.edu.cn
  • 作者简介:王永政(1990—),男,实验师,硕士。主要研究方向为油气采收率提高机制及应用研究。
  • 基金资助:
    国家自然科学基金面上项目(12272350);国家重大专项(2017ZX05072005)

Process optimization and properties of petroleum pitch/polyacrylonitrile electrospun carbon nanofibers

WANG Yongzheng1, HUANG Lintao1,2, SONG Fuquan1,3()   

  1. 1. School of Petrochemical Engineering and Environment, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
    2. Ningbo Shanshan Silicon Base Material Co., Ltd., Ningbo, Zhejiang 315100, China
    3. School of Oil and Gas Engineering, Changzhou University, Changzhou, Jiangsu 213000, China
  • Received:2023-05-05 Revised:2023-11-03 Published:2024-08-15 Online:2024-08-21

摘要:

为实现石油沥青的高值化利用,通过静电纺丝技术制备了沥青/聚丙烯腈复合纳米纤维,并经过预氧化和炭化处理制备了复合碳纳米纤维。采用Box-Behnken响应面法研究了纺丝参数对纤维直径的影响,通过调整石油沥青比例和热处理温度研究了预氧化和炭化过程中纤维的结构转变。结果表明:影响纤维直径的静电纺丝参数主次顺序依次为推流速度、纺丝电压和接收距离;响应面法模型预测值与最佳工艺条件下纤维直径实测值的相对误差为9.13%;当预氧化温度为250 ℃时,预氧化丝具有最大芳构化指数,其相应预氧化度最高;炭化温度与复合碳纳米纤维的石墨化程度呈正相关,随着炭化温度的升高,纤维直径大幅减小,复合碳纳米纤维石墨结构有序性逐渐增加。

关键词: 石油沥青, 聚丙烯腈, 静电纺丝, 碳纳米纤维, Box-Behnken响应面法

Abstract:

Objective Due to the complexity of its own components and structure, long-term low-value utilization of petroleum pitch often causes it to become an environmental pollutant. The research aims to achieve the high-value utilization of petroleum pitch by preparing pitch based composite carbon nanofibers, reducing the production cost and environmental pollution, and providing a reliable preparation method and process support for the application of carbon nanofibers in adsorption, energy storage and other fields.

Method Petroleum pitch and polyacrylonitrile were dissolved in various solvents and mixed at different ratios to prepare the spinning solution for composite nanofiber production. Electrospinning technology was utilized to create the nanofibers from the solutions, and the spinning parameters including flow rate, voltage, and tip-to-collector distance were optimized using Box-Behnken response surface methodology. The composite nanofibers then underwent pre-oxidation and carbonization treatments at varying temperatures. The structural transformation of the fibers was analyzed by X-ray diffraction, fourier transform infrared spectroscopy, scanning electron microscope, and Raman spectroscopy. The effect of petroleum pitch ratio and carbonization temperature on the graphitization degree of the carbon nanofibers was investigated.

Results The main factors affecting the fiber diameter were found to be the flow rate, spinning voltage and tip-to-collector distance, in descending order of significance. The optimal electrospinning conditions were obtained to be 0.64 mL/h flow rate, 15.28 kV voltage, and 13.08 cm distance, resulting in an average fiber diameter of 342.43 nm with a relative error of 9.13% compared to the predicted value. The regression model was found to have high reliability and accuracy, as demonstrated by the response surface analysis and verification experiments. The structural transformation of the composite fibers during pre-oxidation and carbonization was analyzed systematically. The aromaticity index of the pre-oxidized fibers was found to be significantly affected by the pre-oxidation temperature, reaching the maximum value of 77.56% at 250 ℃. The linear structure of polyacrylonitrile was verified to convert into a ladder-shaped structure during pre-oxidation, and dehydrogenation reaction occurred in the molecular chain of the pre-oxidized fibers. The effect of petroleum pitch ratio and carbonization temperature on the graphitization degree of the carbon nanofibers was investigated. It was found that increasing the petroleum pitch ratio could improve the graphitization degree to some extent, and that the minimum value of R (the intensity ratio of D peak to G peak in Raman spectra) was obtained when the pitch ratio was 20%-30%. Increasing the carbonization temperature was found to reduce the fiber diameter and increase the crystallite size and interlayer spacing of the carbon nanofibers, indicating a gradual increase in the ordered structure of graphite with the increase in heat treatment temperature.

Conclusion Petroleum pitch/polyacrylonitrile composite carbon nanofibers were successfully prepared using the electrospinning technology, and the spinning parameters were optimized using response surface methodology. The structural transformation and graphitization degree of the composite fibers during pre-oxidation and carbonization processes were investigated. It was found that the optimal pre-oxidation temperature was 250 ℃, and increasing the petroleum pitch ratio and carbonization temperature could improve the graphitization degree of the carbon nanofibers to some extent. Potential applications of the composite carbon nanofibers were identified in adsorption, energy storage, and catalyst support fields. Further research is needed to explore their performance and mechanism in these fields. Some challenges and limitations of the research method were also pointed out, including the difficulty of controlling the uniformity and orientation of the fibers, and the influence of solvent selection and environmental factors on the fiber morphology.

Key words: petroleum pitch, polyacrylonitrile, electrospinning, carbon nanofiber, Box-Behnken response surface method

中图分类号: 

  • TQ127.1

表1

静电纺丝工艺参数因素编码水平"

因素
水平
推流速度/(mL·h-1) 纺丝电压/kV 接收距离/cm
-1 0.6 13 11
0 0.9 15 13
1 1.2 17 15

表2

响应面法实验设计方案及结果"

实验
序号
推流速度/
(mL·h-1)
纺丝电
压/kV
接收距
离/cm
纤维直
径/nm
1 1.2 15 15 615.04
2 0.9 17 11 982.83
3 1.2 17 13 405.58
4 0.6 13 13 261.84
5 0.9 13 15 851.93
6 0.9 13 11 1 002.82
7 0.9 15 13 571.90
8 0.9 15 13 613.21
9 1.2 15 11 425.12
10 0.9 17 15 1 234.09
11 0.6 17 13 250.75
12 0.6 15 15 207.33
13 0.9 15 13 563.07
14 0.6 15 11 296.04
15 1.2 13 13 385.82

表3

纤维直径的回归模型方差分析"

方差来源 平方和 自由度 均方 F P
模型 1.34×106 9 1.49×105 29.37 0.000 8
A 8.32×104 1 8.32×104 16.39 0.009 8
B 1.72×104 1 1.72×104 3.39 0.125 1
C 5.08×103 1 5.08×103 1.00 0.363 0
AB 237.93 1 237.93 0.046 9 0.837 1
AC 1.94×104 1 1.94×104 12.82 0.147 9
BC 4.04×104 1 4.04×104 7.97 0.037 0
A2 7.29×105 1 7.29×105 143.69 <0.000 1
B2 1.30×105 1 1.30×105 25.62 0.003 9
C2 2.26×105 1 2.26×105 44.59 0.001 1
残差 2.54×104 5 5.07×103
失拟项 2.39×104 3 7.98×103 11.14 0.083 5
误差 1.43×103 2 716.42
总和 1.37×106 14
R2=0.981 4 信噪比=17.272 1

图1

因素交互对纤维直径影响的响应曲面图"

图2

石油沥青/PAN复合纳米纤维及其在不同温度下预氧化丝的XRD图谱"

表4

不同温度下预氧化丝的芳构化指数"

预氧化温度/℃ 芳构化指数/% 晶粒尺寸/nm
220 73.22 0.92
250 77.56 1.01
280 76.40 1.07
310 75.04 1.15

图3

不同预氧化温度下预氧化丝的红外光谱图"

图4

不同炭化温度下石油沥青/PAN碳纳米纤维SEM照片及其直径分布图"

图5

不同碳化温度下复合碳纳米纤维XRD谱图"

表5

石油沥青/PAN碳纳米纤维的XRD分析数据"

炭化温度/℃ d002/nm Lc/nm La/nm
700 0.367 1.24 1.34
900 0.360 1.28 1.68
1 100 0.351 1.31 2.17
1 300 0.349 1.39 2.89

图6

不同石油沥青比例对应碳纳米纤维的Raman谱图"

图7

不同炭化温度下碳纳米纤维的Raman光谱及其Gaussian分峰拟合图"

表6

不同炭化温度下碳纳米纤维Raman参数"

炭化温
度/℃
R WD/
cm-1
WG/
cm-1
FWHM(D)/
cm-1
FWHM(G)/
cm-1
700 1.349 1 357.82 1 580.86 351.35 261.64
900 1.100 1 348.19 1 585.43 308.20 117.09
1 100 1.046 1 342.68 1 578.55 286.35 108.24
1 300 1.006 1 337.43 1 579.07 264.56 105.97
[1] 蒋星宇, 王洁琼, 邱琳琳, 等. 碳基纤维材料在能源领域的应用[J]. 材料导报, 2021, 35(S2): 470-478.
JIANG Xingyu, WANG Jieqiong, QIU Linlin, et al. Applications of carbon based fiber materials in energy field[J]. Materials Reports, 2021, 35 (S2): 470-478.
[2] 李家成, 田湉, 王佳豪, 等. 碳材料吸附去除水中抗生素的研究进展[J]. 应用化工, 2021, 50(10): 2840-2846.
LI Jiacheng, TIAN Tian, WANG Jiahao, et al. Research progress on adsorption and removal of antibiotics from water by carbon materials[J]. Applied Chemical Industry, 2021, 50(10): 2840-2846.
[3] 杜琳, 陈文杰, 桂思, 等. 静电纺丝纳米纤维制备技术应用研究进展[J]. 轻纺工业与技术, 2022, 51(6): 110-113.
DU Lin, CHEN Wenjie, GUI Si, et al. Research progress on application of electrospinning nanofiber preparation technology[J]. Light and Textile Industry and Technology, 2022, 51(6): 110-113.
[4] ALARIFI I M, KHAN W S, ASMATULU R. Synthesis of electrospun polyacrylonitrile-derived carbon fibers and comparison of properties with bulk form[J]. PLoS One, 2018. DOI:10.1371/journal.pone.0201345.
[5] YADAV D, AMINI F, EHRMANN A. Recent advances in carbon nanofibers and their applications: a review[J]. European Polymer Journal, 2020. DOI:10.1016/j.eurpolymj.2020109963.
[6] 陈群, 宋会青, 刘化虎, 等. 聚丙烯腈碳纤维的制备及应用进展[J]. 安徽化工, 2013, 39(6): 13-16.
CHEN Qun, SONG Huiqing, LIU Huahu, et al. The progress on preparation and application of polyacrylonitrile carbon fiber[J]. Anhui Chemical Industry, 2013, 39 (6): 13-16.
[7] LIU J, CHEN X, LIANG D, et al. Development of pitch-based carbon fibers: a review[C]// Energy Sources, Part A:Recovery, Utilization, and Environmental Effects. USA: Taylor & Francis, 2020: 1-21.
[8] 皇甫慧君, 任蕊, 李芬芬, 等. 碳纤维的产业化发展简析[J]. 应用化工, 2020, 49(3): 761-763.
HUANGFU Huijun, REN Rui, LI Fenfen, et al. A brief analysis of the industrialization development of carbon fiber[J]. Applied Chemical Industry, 2020, 49(3): 761-763.
[9] BANERJEE C, CHANDALIYA V K, DASH P S. Recent advancement in coal tar pitch-based carbon fiber precursor development and fiber manufacturing process[J]. Journal of Analytical and Applied Pyrolysis, 2021.DOI:10.1016/j.joap.2021.105272.
[10] HARANO T, TAKEICHI Y, USUI M, et al. Observation of distribution of π-orbital-oriented domains in PAN-and pitch-based carbon fibers using scanning transmission X-ray microscopy[J]. Applied Sciences, 2020.DOI:10.3390/app10144836.
[11] 杜尔登, 张申耀, 冯欣欣, 等. 光催化降解内分泌干扰物双酚A的响应面分析与优化[J]. 环境工程学报, 2014, 8(12): 5124-5128.
DU Erdeng, ZHANG Shenyao, FENG Xinxin, et al. Response surface analysis and optimization for photocatalytic degradation of endocrine disruptor chemical bisphenol A[J]. Chinese Journal of Environmental Engineering, 2014, 8(12): 5124-5128.
[12] CHANG Y, SHEN C, LI P Y, et al. Optimization of polyacrylonitrile-cysteine resin synthesis and its selective removal of Cu(II) in aqueous solutions[J]. Chinese Chemical Letters, 2017, 28(2): 319-323.
[13] 侯思聪, 王学晨, 张兴祥. 间位全芳香型聚苯并咪唑及其纳米纤维的制备与表征[J]. 合成纤维, 2014, 43(12): 20-25.
HOU Sicong, WANG Xuechen, ZHANG Xingxiang. Preparation and characterization of a fully aromatic meta-polybenzimidazole and its nanofibers[J]. Synthetic Fiber in China, 2014, 43(12): 20-25.
[14] NURFAIZEY A H, MUNAJAT N A. Effect of electrospinning distance and applied voltage on the production of polyacrylonitrile electrospun fibres[C]// Proceedings of Mechanical Engineering Research Day, Malaysia: Center for Advanced Research on Energy, 2020: 94-96.
[15] 李龙, 严婕, 吴磊, 等. 聚丙烯腈织物预氧化及其性能[J]. 西安工程大学学报, 2022, 36(2): 1-7.
LI Long, YAN Jie, WU Lei, et al. Pre-oxidation of polyacrylonitrile fabric and its properties[J]. Journal of Xi'an Polytechnic University, 2022, 36(2): 1-7.
[16] 阳智, 刘呈坤, 吴红, 等. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(7): 54-61.
YANG Zhi, LIU Chengkun, WU Hong, et al. Preparation and characterization of lignin/polyacrylonitrile-based carbon fibers[J]. Journal of Textile Research, 2021, 42(7): 54-61.
[17] 胡章记, 李东风, 胡洁, 等. 聚丙烯腈基碳纤维纺丝过程中的取向性研究[J]. 化工生产与技术, 2021(2): 6-8.
HU Zhangji, LI Dongfeng, HU Jie, et al. Study on the orientation of PAN-based carbon fibers spinning[J]. Chemical Production and Technology, 2021(2): 6-8.
[18] 姜鹏飞. 进口中间相沥青碳纤维超高温石墨化处理后的特性分析[J]. 化学通报, 2022, 85(1): 127-131.
JIANG Pengfei. Characteristics analysis of commercial mesophase pitch-based carbon fibers after ultra-high temperature graphitization[J]. Chemistry Bulletin, 2022, 85(1): 127-131.
[19] 郝俊杰, 吕春祥, 李登华. 碳纤维微观结构表征: Raman光谱[J]. 化工进展, 2020, 39(S2): 227-233.
doi: 10.16085/j.issn.1000-6613.2020-0507
HAO Junjie, LÜ Chunxiang, LI Denghua. Characterization of the microstructure of carbon fibers: Raman spectroscopy[J]. Chemical Industry and Engineering Progress, 2020, 39(S2): 227-233.
doi: 10.16085/j.issn.1000-6613.2020-0507
[20] PESIN L A. Review structure and properties of glass-like carbon[J]. Journal of Materials Science, 2002, 37(1): 1-28.
[1] 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17.
[2] 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126.
[3] 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141.
[4] 钱洋, 张璐, 李晨阳, 王荣武. 静电纺海藻酸钠复合纳米纤维膜制备及其性能[J]. 纺织学报, 2024, 45(08): 18-25.
[5] 刘嘉炜, 季东晓, 覃小红. 空气过滤用静电纺纳米纤维材料研究进展[J]. 纺织学报, 2024, 45(08): 35-43.
[6] 刘德龙, 王红霞, 林童. 气流辅助的静电纺丝技术研究进展[J]. 纺织学报, 2024, 45(08): 44-53.
[7] 于承浩, 王元非, 于腾波, 吴桐. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45(07): 18-23.
[8] 于雯, 邓南平, 唐湘泉, 康卫民, 程博闻. 静电溶吹微纳无机纤维制备技术及其应用进展[J]. 纺织学报, 2024, 45(07): 230-239.
[9] 刘思彤, 金丹, 孙东明, 李懿轩, 王艳慧, 王静, 王原. 静电纺纳米纤维结构的研究进展[J]. 纺织学报, 2024, 45(06): 201-209.
[10] 徐振凯, 马鸣, 蔺多佳, 刘航, 张剑峰, 夏鑫. 自支撑聚吡咙基碳纤维负极材料的制备及其电化学性能[J]. 纺织学报, 2024, 45(06): 23-31.
[11] 时吉磊, 陈廷彬, 付少海, 张丽平. 低红外发射率控温热红外伪装材料的制备与性能[J]. 纺织学报, 2024, 45(06): 32-38.
[12] 栗志坤, 于影, 左雨欣, 史豪秦, 金玉珍, 陈洪立. 聚丙烯腈/二硫化钼复合薄膜的挠曲电效应分析及其应用[J]. 纺织学报, 2024, 45(05): 27-34.
[13] 王新庆, 季东圣, 李舒畅, 杨晨, 张宗宇, 刘实诚, 王航, 田明伟. 包载型聚丙烯腈/SiO2气凝胶复合纳米纤维制备及其隔热性能[J]. 纺织学报, 2024, 45(05): 35-42.
[14] 梁文静, 吴俊贤, 何崟, 刘皓. 基于复合纳米纤维膜的离子传感器制备及其性能[J]. 纺织学报, 2024, 45(04): 15-23.
[15] 宋贝贝, 赵浩阅, 李欣宇, 屈展, 方剑. 载有MXene的钴氮掺杂碳纳米纤维在锂硫电池中的应用[J]. 纺织学报, 2024, 45(04): 24-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!