纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 63-69.doi: 10.13475/j.fzxb.20230503401

• 纺织工程 • 上一篇    下一篇

基于ANSYS Workbench的高密机织滤料动态形变模拟与分析

田少萌1, 张丽2, 石浩轩2, 徐阳1()   

  1. 1.江南大学 纺织科学与工程学院, 江苏 无锡 214122
    2.南通醋酸纤维有限公司, 江苏 南通 226008
  • 收稿日期:2023-05-12 修回日期:2024-01-11 出版日期:2024-09-15 发布日期:2024-09-15
  • 通讯作者: 徐阳(1964—),男,教授,博士。主要研究方向为功能纺织材料。E-mail: xuyang@jiangnan.edu.cn
  • 作者简介:田少萌(1997—),女,硕士生。主要研究方向为过滤机织物的研究及仿真模拟。
  • 基金资助:
    国家重点研发计划项目(2022YFB3807100);国家重点研发计划项目(2022YFB3807103)

Simulation and analysis of dynamic deformation of densely woven filter fabrics based on ANSYS Workbench

TIAN Shaomeng1, ZHANG Li2, SHI Haoxuan2, XU Yang1()   

  1. 1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
    2. Nantong Cellulose Fibers Co., Ltd., Nantong, Jiangsu 226008, China
  • Received:2023-05-12 Revised:2024-01-11 Published:2024-09-15 Online:2024-09-15

摘要:

为优化过滤机织物的设计,进一步探究机织滤料在受压时的动态形变及孔径变化规律,依据在实际应用时过滤机织物的纱线线密度、经纬密、面密度等参数,借助建模软件Solidworks建立织物三维细观模型,利用有限元软件ANSYS Workbench对不同压力条件下织物的形变情况进行模拟,分析织物最大变形量、变形轮廓以及孔径变化趋势,并将模拟结果与实验结果进行比较。结果表明:织物最大变形量在圆心处,变形量沿直径呈梯度递减;随着压力升高,织物中心的变形量呈非线性增加,织物的变形轮廓曲线类似于正弦曲线;在压力作用下织物孔径增大,且中心区域孔径大于远离圆心处孔径,同一周向孔径大小和形状也会发生改变。模拟结果与实验结果具有较好的一致性。

关键词: 机织物, 过滤, 数值模拟, 动态形变, 孔径分布

Abstract:

Objective Woven filter materials are privileged amongst solids-liquid filtration materials by virtue of their superior strength, durability, superior filtration precision, ease of residue disposal, and soon. The efficacy of woven fabric filtration hinges upon the weave aperture, with both the fiber inner aperture and yarn interlace aperture influencing the filtration efficiency and resistance. In addition, yarns are typically elastomeric materials, and their weave behaviors under varying pressure contribute to further alterations in the fabric structure hence impacting the filtration efficiency and resistance. Consequently, the comprehension of deformation mechanisms of textiles under high pressure holds pivotal implications for enhancing the design and optimization of filter cloth.

Method This paper presents a comprehensive study on an archietypal plain woven filtration fabrics using VHX-500 super high-depth digital microscope for imaging the cross section of the fabric, and Image J software for collecting data regarding yarn curvature wave height and yarn spacing. Experiments were conducted to validate the model's accuracy under diverse pressure conditions. The fabric models were established via Solid Works software and a finite element analysis method was employed to simulate deformation of high density woven filter under varying pressures utilizing ANSYS Workbench's Mechanical module, which was adopted to analyze factors such as maximal deformation quantity, form contour curve progression, and hole diameter changing trends.

Results The simulation results indicated that maximum deformation of the fabric took place at the original form, with a gradual decline in deformation along the diameter. The fabric underwent an escalating deformation as pressure was increased. Within a certain threshold, a non-linear increase in maximum deformation of filter fabrics residing centrally was proportional to the applied pressure. Initially, lesser pressure induced substantial deformations in the fabric, but further increments in pressure resulted in a diminished incremental deformation. The longitudinal and latitudinal profile of the fabric showed congruent deformation, with the center contour curve conforming to the sine function pattern.

The strain demonstrated a maximum at the outermost regions of the fabric, where it diminished progressively from the center to the edge, with excrescent strain along the warp yarns towards both sides from the core. For individual thread, it was observed that the interlacing region illustrated lesser strain than the noninterlacing region. The strain distribution across various positions within the same circumference of the fabric varied with the strain on the warp yarns augmenting steadily and the weft yarns decreasing gradually. The mismatch between warp and weft strain not only amplified the size difference but also alters the shape. With similar warp and weft exerted strain, there occurred an equivalent increase in the post-deformation pore dimension compared to the unvaried pore. On the other hand, the significant disparity in the strain of the warp and weft underwent greater deformation in one direction relative to the other, thereby inducing a change in the pore's shape and dimension. In accordance with the fabric's strain pattern, the compressibility manifested different pore dimensions throughout the fabric, with the pore being larger in the central position rather than in the outer regions. Moreover, the size and shape of the pore across the same direction would also vary post compressing.

Through the deployment of a textile surface deformation experiment, it was established that the maximum strain measured for plain weave fabric under diverse pressure conditions paralleled with the simulation's prediction, with an error rate less than 10%. This substantiated the accuracy of the simulation. Additionally, the fabric curve deformations were fitted to follow a sine function, corroborating with the the simulation result.

Conclusion This study employs finite element software ANSYS Workbench to simulate the deformation of high-density filter fabrics under various pressures, scrutinizing the fabric's maximum deformation quantity, distortional profile, and pore size distribution post-deformation. A validating experiment for this simulation was conducted through an actual fabric deformation test, demonstrating accurate predictive capability. The outcomes suggest that 1) the maximum deformation quantity is located at the circle center, decreasing in a gradient manner as per diameter; 2) within a particular range, the maximum deformation at the center of the filter fabric increases non-linearly with pressure augmentation; 3) further, the contoured curve of polyamide 66 woven fabric resembles a sine wave pattern significantly; and 4) as pressure acts on the fabric, the pore size expands, with larger pore size at the central region compared to apices away from the center, simultaneously modifying the dimensions and shape of periodic pores. This research aids in comprehending the dynamic deformation and pore size variation of woven fabrics under compressive conditions, thus offering a valuable reference for the custom design and analysis of filtration fabrics.

Key words: woven fabric, filtration, numerical simulation, dynamic deformation, pore size distribution

中图分类号: 

  • TH145.2

图1

平纹织物经向横截面显微镜照片"

表1

织物几何结构参数"

类别 屈曲波高a 间距b 截面长度c 纱线中心
位置高度d
经向横截面1 0.10 0.26 0.16 0.06
纬向横截面2 0.06 0.13 0.12 0.08

图2

织物的二维几何模型"

图3

织物细观模型"

图4

结构网格图"

图5

不同压力下织物变形云图"

图6

不同压力条件下织物模拟及变形轮廓曲线"

图7

20 kPa压力下织物应变云图"

图8

织物模拟与实验最大形变量对比"

图9

实验及拟合变形轮廓"

[1] 李淳, 吴坚, 汪德潢, 等. 滤布的结构参数对过滤阻力特性的影响[J]. 大连轻工业学院学报, 1997, 16(2): 45-49.
LI Chun, WU Jian, WANG Dehuang, et al. Effect of structural parameters of filter cloth on filter resistance characteristics[J]. Journal of Dalian Institute of Light Industry, 1997, 16(2): 45-49.
[2] 王巧智, 陈泽潭, 李红霞. 我国工业过滤布现行标准研究[J]. 中国质检, 2021(8): 95-97.
WANG Qiaozhi, CHEN Zetan, LI Hongxia. Research on current standards of industrial filter cloth in China[J]. China Quality Inspection, 2021(8): 95-97.
[3] 狄剑锋, 杜文琴, 齐宏进. 织物毛细孔径分布与其组织结构及组分的关系[J]. 纺织学报, 2010, 31(4): 50-54.
DI Jianfeng, DU Wenqin, QI Hongjin. Relationship between capillary pore size distribution and its microstructure and components[J]. Journal of Textile Research, 2010, 31(4): 50-54.
[4] 毛成栋, 张明光, 郭昕. 机织滤布鼓泡孔径测试与分析[J]. 纺织学报, 2008, 29(5): 39-41.
MAO Chengdong, ZHANG Mingguang, GUO Xin. Test and analysis of bubbling pore size of woven filter cloth[J]. Journal of Textile Research, 2008, 29(5): 39-41.
[5] OWCZAREK M. Morphometrical structural analysis of inter-thread pores in woven fabrics with the use of computer image analysis[J]. Textile Research Journal, 2019, 89(23/24): 4858-4874.
[6] 唐琳, 唐晓武, 曲绍兴. 双向拉应变对有纺织物孔径参数影响的研究[J]. 岩土工程学报, 2016, 38(1): 134-140.
TANG Lin, TANG Xiaowu, QU Shaoxing. Study on the influence of bidirectional tensile strain on pore size parameters of textiles[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 134-140.
[7] TORABI P, ABGHARY M J, BIDOKI S M, et al. A new method for measuring fabric plain strain using the gray-scale intensity index of image[J]. Fibers and Polymers, 2021, 22(10): 2892-2899.
[8] JOHNSON J, MUZWAR M, RAMAKRISHNAN S, et al. Electrospun nylon-66 nanofiber coated filter media for engine air filtration applications[J]. Journal of Applied Polymer Science, 2023, 40(44):1-13.
[9] WANG H X, WEERASINGHE D, MOHOTTI D, et al. On the impact response of UHMWPE woven fabrics: experiments and simulations[J]. International Journal of Mechanical Sciences, 2021. DOI: 10.1016/j.ijmecsci.2021.106574.
[10] 王东宁. 超高分子量聚乙烯平纹织物的防弹性能的研究与数值模拟[D]. 天津: 天津工业大学, 2013: 19-21.
WANG Dongning. Study and numerical simulation of ballistic resistance of ultra-high molecular weight polyethylene plain fabric[D]. Tianjin: Tiangong University, 2013: 19-21.
[11] LIN H, CLIFFORD M J, LONG A C, et al. A finite element approach to the modelling of fabric mechanics and its application to virtual fabric design and testing[J]. Journal of The Textile Institute, 2012, 103(10):1063-1076.
[12] RAO M P, DUAN Y, KEEFE M, et al. Modeling the effects of yarn material properties and friction on the ballistic impact of a plain-weave fabric[J]. Composite Structures, 2009, 89(4):556-566.
[13] 韩晓果, 肖学良, 钱坤. 紧密机织物高气压下面外变形的机制[J]. 纺织学报, 2017, 38(7): 49-55.
HAN Xiaoguo, XIAO Xueliang, QIAN Kun. Mechanism of external deformation of compact woven fabric under high air pressure[J]. Journal of Textile Research, 2017, 38(7): 49-55.
[14] ZHOU H T, XIAO X L, QIAN K, et al. Numerical and experimental analyses of out-of-plane deformation of triaxial woven fabric[J]. Materials Research Express, 2018. DOI: 10.1088/2053-1591/accod2.
[1] 张琦, 左露娇, 屠佳妮, 聂美婷. 经编贾卡鞋面材料透气性的数值模拟[J]. 纺织学报, 2024, 45(09): 78-83.
[2] 岳旭, 王蕾, 孙丰鑫, 潘如如, 高卫东. 基于ABAQUS的平纹织物同面对向弯曲有限元模拟[J]. 纺织学报, 2024, 45(08): 165-172.
[3] 刘嘉炜, 季东晓, 覃小红. 空气过滤用静电纺纳米纤维材料研究进展[J]. 纺织学报, 2024, 45(08): 35-43.
[4] 谢红, 张林蔚, 沈云萍. 基于人体臂部的连续动态服装压力预测模型及准确性表征方法[J]. 纺织学报, 2024, 45(07): 150-158.
[5] 刘倩倩, 尤健明, 王琰, 孙成磊, 祝国成. 纤维弯曲对其集合体过滤特性影响的稳态数值分析[J]. 纺织学报, 2024, 45(07): 31-39.
[6] 陈锦苗, 李纪伟, 陈萌, 宁新, 崔爱华, 王娜. 壳聚糖微纳米纤维复合抗菌空气滤材的制备及其性能[J]. 纺织学报, 2024, 45(05): 19-26.
[7] 徐辉, 朱昊, 潘苏情, 史红艳, 应迪. 基于变截面复丝模型的机织物模拟[J]. 纺织学报, 2024, 45(05): 70-78.
[8] 贾琳, 董晓, 王西贤, 张海霞, 覃小红. 聚己内酯/MgO复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(04): 59-66.
[9] 韩烨, 田苗, 蒋青昀, 苏云, 李俊. 织物-空气层-皮肤三维结构建模及其传热模拟[J]. 纺织学报, 2024, 45(02): 198-205.
[10] 杨奇, 刘高慧, 黄琪帏, 胡睿, 丁彬, 俞建勇, 王先锋. 熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究[J]. 纺织学报, 2024, 45(01): 12-22.
[11] 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29.
[12] 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64.
[13] 孙辉, 崔小港, 彭思伟, 丰江丽, 于斌. 聚乳酸/磁性金属有机框架材料复合熔喷布的制备及其空气过滤性能[J]. 纺织学报, 2023, 44(12): 26-34.
[14] 石路健, 宋亚伟, 谢汝义, 高志超, 房宽峻. 莱赛尔机织物防原纤化前处理工艺优化[J]. 纺织学报, 2023, 44(12): 96-105.
[15] 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!