纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 78-83.doi: 10.13475/j.fzxb.20230504201

• 纺织工程 • 上一篇    下一篇

经编贾卡鞋面材料透气性的数值模拟

张琦(), 左露娇, 屠佳妮, 聂美婷   

  1. 江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2023-05-15 修回日期:2024-06-11 出版日期:2024-09-15 发布日期:2024-09-15
  • 作者简介:张琦(1977—),男,副教授,博士。研究方向为新型针织装备与针织工艺。E-mail: zhangqi_vip@jiangnan.edu.cn
  • 基金资助:
    江苏省自然科学青年基金项目(BK20221094);中央高校基本科研业务费专项资金资助项目(JUSRP122003)

Numerical simulation of air permeability of warp-knitted jacquard shoe upper materials

ZHANG Qi(), ZUO Lujiao, TU Jiani, NIE Meiting   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2023-05-15 Revised:2024-06-11 Published:2024-09-15 Online:2024-09-15

摘要:

为提前预测组织结构与经编贾卡鞋面材料舒适性的关系,以避免耗费大量的人力和时间,通过从鞋材不同功能区选取实验样品,借助建模软件Solidworks建立样品的三维结构几何模型,通过Ansys软件对该模型进行有限元分析的前处理及网格划分,然后将几何模型与空气流体动力学计算相结合,利用Fluent软件对织物的透气行为进行流体分析和数值模拟,最后将模拟结果与实验结果进行对比分析。结果表明:网眼组织的存在会增加鞋面材料的孔隙率进而增强鞋材的透气性能,同时,网眼处于反面的织物透气性大于网眼处于正面的织物透气性,模拟结果与实验结果相符,误差低于20%,因此利用数值模拟预测经编贾卡鞋材的透气性能是有效的。

关键词: 经编贾卡, 鞋面材料, 透气性, 数值模拟, 计算流体动力学

Abstract:

Objective Air permeability affects the comfort of shue upper materials. Before making footwear products, it is necessary to test the air permeability of the sample upper materials. In order to study the influence of organizational structure on the air permeability of warp-knitted jacquard upper materials, it is necessary to explore a method for predicting the air permeability of warp-knitted jacquard upper materials. It is also necessary to verify the feasibility of data simulation research methods to improve the efficiency of shoe upper materials from design to production and then to final application, and reduce unnecessary waste of resources and time.

Method The experimental samples were selected from different functional areas of the jacquard upper material. The front and back sides of the wear resistance zone were with dense surface and solid bottom (sample A), and the front and back sides of the breathable zone were with mesh surface and solid bottom (sample B1). sample B2 was obtained by adjusting the positive and negative orientation of sample B1. The fabric structure of each sample was observed by Nikon E100 microscope, and then the geometric model of the fabric sample structure was established by Solidworks three-dimensional modeling software. The geometric model of the sample was imported into Workbench finite element analysis software for model preprocessing and meshing, combined with geometric model and computational fluid dynamics. Fluent, a fluid analysis software, was adopted to calculate the permeability behavior of the fabric. In order to verify the feasibility of the simulation data, the permeability of the sample was tested by YG46IE-III automatic permeability meter, and the simulation results were compared with the experimental results.

Results Speed cloud chart showed that the closer to the yarn model, the more blocked the airflow and the smaller the air flow rate. The pores in the coil were smaller than the gap at each longitudinal interval of the fabric, so the air flow rate between the pores in the coil was found much smaller than the air flow rate at the longitudinal interval. In addition, the flow velocity of model A is more uniform, while the air velocity at the grid of model B1 is much larger than that at the surrounding meshless due to the existence of the grid. In summary, under the same conditions, the air permeability of the mesh fabric B1 was larger than that of the mesh fabric A, that is, the air permeability B1 > A. When the air flows from the mesh surface, much air was accumulated at the mesh due to the large pores, and the flow rate of the air at the mesh is much larger than that of the same surface layer without mesh, resulting in uneven distribution of air flow rate in the spacer layer. When the air contacted the bottom layer of the fabric through the spacer layer, which was subjected to resistance, thus reducing the air flow rate. When the air flowed from the non-grid surface of the fabric, the air had to flow uniformly from the inlet boundary. After passing through the spacer layer to the grid, the flow rate became larger, so the overall flow rate became larger. In summary, the air permeability B2 > B1.

Conclusion Due to the complicated preparation process of warp-knitted jacquard upper material, in order to better study its air permeability and save the time consumed by sample preparation and test performance, this research attempts to use numerical simulation method to predict the air permeability of warp-knitted jacquard upper materials. The results show that the simulation results are similar to the experimental results, and the error is less than 20%. Therefore, this method is feasible. However, there are still some shortcomings. For example, the model establishment process ignores its actual friction factors, so the simulation results are greater than the actual results. Secondly, the upper material structure of warp-knitted jacquard is very complex, and the modeling process is cumbersome. It is necessary to develop better procedures for jacquard fabric modeling to save time and cost.

Key words: warp-knitted jacquard, shoe upper material, air permeability, numerical simulation, computational fluid dynamics

中图分类号: 

  • TS181.9

表1

织物工艺参数表"

试样
名称
偏移情况 横密/
(纵行·cm-1)
纵密/
(横列·cm-1)
织物厚度/
mm
面密度/
(g·m-2)
垫纱数码 原料
前针床 后针床
密实组织 HHHH HHTT 10 16 3 388 GB1:1-0-0-0/0-1-1-1
GB2:1-0-0-0/3-4-4-4
GB3:1-0-1-2/1-0-1-2
13.33 tex(72 f)涤纶DTY
13.33 tex(192 f)涤纶DTY
涤纶单丝
网眼组织 HHTT HHHH 505 JB4:1-1-1-0/0-0-1-2
GB5:1-1-1-0/0-0-0-1
13.33 tex(192 f)涤纶DTY
13.33 tex(72 f)涤纶DTY

图1

不同样品图"

图2

样品线圈单元图"

图3

单元模型图"

图4

不同样品几何结构模型"

图5

模型前处理"

表2

样品模型编号"

样品模型编号 有无网眼 入口边界 出口边界
A 密实表层 平实底层
B1 网眼表层 平实底层
B2 平实底层 网眼表层

图6

速度云图"

表3

透气率实测值与模拟值"

试样
模型编号
透气率/(mm·s-1) 误差/%
实测数据 模拟数据
A 788.6 842.1 6.8
B1 885.3 943.0 6.5
B2 968.1 1 150.4 17.8
[1] 吴东利, 孙继锋, 臧莉静. 鞋类设计中的材料选择及舒适性研究:评《鞋类设计职业规范》[J]. 上海纺织科技, 2022, 50(4):67-68.
WU Dongli, SUN Jifeng, ZANG Lijing. Research on material selection and comfort in footwear design: review of the professional code of footwear design[J]. Shanghai Textile Science &Technology, 2022, 50(4):67-68.
[2] 代文杰, 邱华, 杨恩惠, 等. 基于ANSYS CFX的织物透气性数值计算[J]. 丝绸, 2018, 55(9):51-56.
DAI Wenjie, QIU Hua, YANG Enhui, et al. Numerical calculation of fabric breathability based on ANSYS CFX[J]. Journal of Silk, 2018, 55(9):51-56.
[3] 吴梦婕, 支超, 孟家光, 等. 医用经编间隔织物透气性研究与数值模拟[J]. 针织工业, 2021(7):66-69.
WU Mengjie, ZHI Chao, MENG Jiaguang, et al. Study and numerical simulation of air permeability of medical warp-knitted spacer fabrics[J]. Knitting Industries, 2021(7):66-69.
[4] ZAHRA E, SAEED A, PARHARN S, et al. Experimental and CFD analysis of air permeability of warp-knitted structures[J]. Fibers and Polymers, 2020, 21(6):1362-1371.
[5] WANG Z Y, HU H. A finite element analysis of an auxetic warp-knitted spacer fabric structure[J]. Textile Research Journal, 2015, 85(4):404-415.
[6] 刘斌. Fluent 2020 流体仿真从入门到精通[M]. 北京: 清华大学出版社, 2021:4.
LIU Bin. Fluent 2020 fluid simulation goes from beginner to proficient[M]. Beijing: Tsinghua University Press, 2021:4.
[7] 肖琪, 王瑞, 张淑洁, 等. 基于ABAQUS的涤/棉混纺机织物起球过程有限元仿真[J]. 纺织学报, 2022, 43(6):70-78.
XIAO Qi, WANG Rui, ZHANG Shujie, et al. Finite element simulation of the pilling process of polyester/cotton blended woven fabrics based on ABAQUS[J]. Journal of Textile Research, 2022, 43(6):70-78.
[8] 陈燕, 张永革, 陈春侠. 经编间隔织物透气透湿性能的研究[J]. 轻纺工业与技术, 2014(6):6-7.
CHEN Yan, ZHANG Yongge, CHEN Chunxia. Study on air and moisture permeability of warp-knitted spacer fabric[J]. Light and Textile Industry and Technology, 2014(6):6-7.
[9] 杨恩惠, 初曦, 邱华. 纬编针织物导热性能的有限元仿真[J]. 丝绸, 2020, 57(1):31-36.
YANG Enhui, CHU xi, QIU Hua. Finite element simulation of thermal conductivity of weft knitted fabrics[J]. Journal of Silk, 2020, 57(1):31-36.
[10] 张囡, 蒋高明, 董智佳, 等. 经编贾卡组织对全成形服装透气性能的影响[J]. 上海纺织科技, 2020, 48(2):5-9.
ZHANG Nan, JIANG Gaoming, DONG Zhijia, et al. Effect of weaving Jaka tissue on breathability of fully formed garments[J]. Shanghai Textile Science & Technology, 2020, 48(2):5-9.
[11] 孙亚博, 马崇启, 秦愈. 基于ABAQUS的纬编针织物热传递有限元分析[J]. 针织工业, 2021(10):12-15.
SUN Yabo, MA Congqi, QIN Yu. Finite element analysis of heat transfer of weft knitted fabrics at ABAQUS[J]. Knitting Industries, 2021(10):12-15.
[12] 钟君. 经编贾卡提花鞋面织物的设计与仿真[D]. 无锡: 江南大学, 2017:6-14.
ZHONG Jun. Design and simulation of warp-knitted Jacquard upper fabric[D]. Wuxi: Jiangnan University, 2017:6-14.
[13] 杨恩惠, 邱华, 代文杰. 基于六边形网格结构的针织物三维建模[J]. 纺织学报, 2019, 40(11):69-74.
doi: 10.13475/j.fzxb.20181106706
YANG Enhui, QIU Hua, DAI Wenjie. 3-D modeling of knitted fabrics based on hexagonal grid structure[J]. Journal of Textile Research, 2019, 40(11):69-74.
doi: 10.13475/j.fzxb.20181106706
[14] 陈燕. 经编间隔织物透气性能的研究[J]. 轻纺工业与技术, 2012, 41(2):15-16.
CHEN Yan. Study on breathability of warp-knitted spacer fabrics[J]. Light and Textile Industry and Technology, 2012, 41(2):15-16.
[15] 高丽. 运动鞋用针织织物设计与热湿舒适性能研究[D]. 杭州: 浙江理工大学, 2017:47-49.
GAO Li. Research on the design of knitted fabrics for sports shoes and the comfort performance of heat and humidity[D]. Hangzhou: Zhejiang Sci-Tech University, 2017: 47-49.
[16] 丛洪莲, 葛明桥, 蒋高明. 基于NURBS曲面的经编针织物三维模型[J]. 纺织学报, 2008, 29(11):132-136.
CONG Honglian, GE Mingqiao, JIANG Gaoming. 3-D model of warp-knitted fabric on a NURBS surface[J]. Journal of Textile Research, 2008, 29(11):132-136.
[1] 田少萌, 张丽, 石浩轩, 徐阳. 基于ANSYS Workbench的高密机织滤料动态形变模拟与分析[J]. 纺织学报, 2024, 45(09): 63-69.
[2] 张琦, 屠佳妮, 张燕婷, 丁宁宇, 郝佳姝, 彭诗语. 经编贾卡间隔鞋面材料提花层结构对其拉伸性能的影响[J]. 纺织学报, 2024, 45(08): 150-157.
[3] 岳旭, 王蕾, 孙丰鑫, 潘如如, 高卫东. 基于ABAQUS的平纹织物同面对向弯曲有限元模拟[J]. 纺织学报, 2024, 45(08): 165-172.
[4] 席立锋, 蒋高明, 马丕波, 贾伟, 张红斌, 王佳冕, 夏风林, 张琦, 刘海桑. 体外膜肺氧合经编膜织物自适应张力的低损伤制备[J]. 纺织学报, 2024, 45(07): 1-9.
[5] 谢红, 张林蔚, 沈云萍. 基于人体臂部的连续动态服装压力预测模型及准确性表征方法[J]. 纺织学报, 2024, 45(07): 150-158.
[6] 刘倩倩, 尤健明, 王琰, 孙成磊, 祝国成. 纤维弯曲对其集合体过滤特性影响的稳态数值分析[J]. 纺织学报, 2024, 45(07): 31-39.
[7] 赵雅杰, 丛洪莲, 丁玉琴, 董智佳. 基于组织模型的纬编面料透气性数字化预测[J]. 纺织学报, 2024, 45(06): 68-74.
[8] 方雪明, 董智佳, 丛洪莲, 丁玉琴. 单面纬编织物变化孔隙率结构设计与透气导湿性能评价[J]. 纺织学报, 2024, 45(05): 51-59.
[9] 何芳, 郭嫣, 韩朝旭, 刘铭燊, 杨瑞瑞. 汽车座椅用织物的复合工艺及其性能[J]. 纺织学报, 2024, 45(05): 79-84.
[10] 韩烨, 田苗, 蒋青昀, 苏云, 李俊. 织物-空气层-皮肤三维结构建模及其传热模拟[J]. 纺织学报, 2024, 45(02): 198-205.
[11] 姚晨曦, 万爱兰. 聚对苯二甲酸丁二醇酯/聚对苯二甲酸乙二醇酯纬编运动T恤面料的热湿舒适性[J]. 纺织学报, 2024, 45(01): 90-98.
[12] 王青, 梁高翔, 殷俊清, 盛晓超, 吕绪山, 党帅. 新型气流牵伸通道结构模型的构建与性能分析[J]. 纺织学报, 2023, 44(11): 52-60.
[13] 杨孟想, 刘让同, 李亮, 刘淑萍, 李淑静. 机织物的热传递与强热条件下热防护性能[J]. 纺织学报, 2023, 44(11): 74-82.
[14] 孙园园, 张琦, 张燕婷, 丁宁宇, 左露娇. 经编双针床贾卡鞋材的网孔结构研究[J]. 纺织学报, 2023, 44(11): 98-104.
[15] 高艺华, 钱付平, 王晓维, 汪虎明, 高杰, 陆彪, 韩云龙. 纺织车间定向均流送风口结构设计及其送风性能[J]. 纺织学报, 2023, 44(08): 189-196.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!