纺织学报 ›› 2024, Vol. 45 ›› Issue (07): 204-212.doi: 10.13475/j.fzxb.20230504501

• 机械与设备 • 上一篇    下一篇

双工位针刺机器人系统设计

李皎1,2, 辛世纪2,3, 陈利1,2, 陈小明1,2,3()   

  1. 1.天津工业大学 纺织科学与工程学院, 天津 300387
    2.天津工业大学 先进纺织复合材料教育部重点实验室, 天津 300387
    3.天津工业大学 机械工程学院, 天津 300387
  • 收稿日期:2023-05-17 修回日期:2024-01-24 出版日期:2024-07-15 发布日期:2024-07-15
  • 通讯作者: 陈小明(1984—),男,高级实验师,博士。主要研究方向为纺织机器人装备及纺织复合材料。E-mail: chenxiaoming@tiangong.edu.cn
  • 作者简介:李皎(1984—),女,博士生。主要研究方向为纺织机器人装备及纺织复合材料。
  • 基金资助:
    天津市自然科学基金项目(19JCYBJC18300);先进功能复合材料技术重点实验室基金项目(6142906210406)

Design of double-station needling robot system

LI Jiao1,2, XIN Shiji2,3, CHEN Li1,2, CHEN Xiaoming1,2,3()   

  1. 1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Advanced Textile Composite Materials of Ministry of Education, Tiangong University, Tianjin 300387, China
    3. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
  • Received:2023-05-17 Revised:2024-01-24 Published:2024-07-15 Online:2024-07-15

摘要:

针对单工位针刺成型系统中人和机器无法高效协同生产,预制体生产效率较低;现有的直线型双工位针刺机器人设备需要2个外部回转轴带动双工位参与织物针刺,系统编程难度较高,且工位切换时需要占据的空间大的问题。提出一种混合切换双工位针刺机器人系统,并开展了双工位针刺成形系统的机械结构设计、异型预制体模具和针刺工艺设计、控制系统设计、运动仿真以及预制体制备的实验验证。结果表明:系统成功实现了大尺寸异型曲面预制体的高效针刺成形,直线/旋转混合切换的双工位使得实现预制体的自动换装的同时又能保证系统空间占用量小;双工位中只有针刺工位上的外部回转轴与6关节机械臂联动,系统较为简单,编程方便;同时提高了数控回转工作台的承载力且将针刺末端执行器的布针数量增加至25针,满足了大尺寸预制体的针刺成形,并使得针刺成形效率直接提高2倍。本文系统可应用于批量化制备大尺寸异型曲面复材预制体。

关键词: 双工位, 预制体, 机器人, 针刺技术, 异型曲面复合材料

Abstract:

Objective The single-station needling machine has low preform production efficiency. The existing linear double-station needling robot equipment occupies a large space, and both double stations are equipped with external rotary axes, ausing system programming difficult. A linear/rotary hybrid switching double-station needling robot system was proposed, with the function of automatic preform changing for efficient needling of large-size quasi-rotary composite preforms. The design of the double-station needling robot is aimed at automatic change of preforms while ensuring that the equipment occupies a small space with the reduced use of external rotary axes to ensure convenient programming of the system.

Method The mechanical structure design, design of quasi-rotary preforms mold and needling process, control system design, motion simulation and experimental verification of the double-station needling robot system were carried out. The double-station involved needling station and a layup station. The motor on the needling station was linked to a 6-joint mechanical arm, and system had only one external rotation axis. Within the rated load range of the robot arm, the number of needles of the needling robot effector was increased and the carrying capacity of the CNC rotary table was further improved to meet the needling molding of large-size preforms.

Results The double-station needling robot consisted of a 6-joint mechanical arm, a needling robot effector, and a double-station working platform. The robot arm controller model was Kawasaki E02/7.5 kW with rated end load of 50 kg. The needling robot effector had 25 needles using a TK13500EL CNC rotary table with a maximum allowable inertia of 19 kg/m2 and a maximum allowable driving torque of 1 430 N·m. The experimental results demonstrated that the double-station needling robot system was able to fabricate successfully quasi-rotary composite preforms. The actual needling trajectories in the experiment were highly consistent with the simulated needling trajectories. In the system, the bearing capacity of the CNC rotary table was improved and the number of needles in the needling robot effector was increased to 25ss, which met the need for needling of large-size preforms, and the needling efficiency was double folded. The system facilitated the automatic preform changing, enabling the workers and needling robot to efficiently cooperate in production. The downtime of the robot after the needling of each unit layer was shortened from the existing 1 h to 1 min., and the needling production efficiency had been greatly improved. In addition, the linear/rotary hybrid switching method made it possible for the double-station working platform to occupy a small working space with a compact structure, providing enough distance between the raw material laying station and the robot needling station, ensuring the safety of raw material laying personnel.

Conclusion This paper presented a linear/rotary hybrid switching double-station needling robot system for efficient manufacturing of large-size quasi-rotary composite preforms. By increasing the carrying capacity of the CNC rotary table and the number of needles of the needling robot effector to 25, the system can achieve needling of quasi-rotary preforms with a height of 1.5 m and a diameter of 1 m. The needling trajectory on the surface of the experimentally prepared preform was highly consistent with the simulated needling trajectory, and the needling efficiency was double folded by virtue of the increase in the number of needles. The setting of double-stations made the automatic change of preforms possible, and the workers and the needling robot could efficiently collaborate in production, which greatly improved the efficiency of needling production. The linear/rotary hybrid switching method made the double-station working platform occupy a small working space with a compact structure. In the double-station, only the external rotary axis on the needling station was linked to the 6-joint mechanical arm. The system was relatively simple and the programming was convenient.

Key words: double-station, preform, robot, needling, special-shape curved surface composite material

中图分类号: 

  • TB332

图1

双工位针刺机器人整体结构示意图"

图2

双工位结构示意图"

图3

双工位变位机构及其工作状态示意图"

图4

伺服升降机构示意图"

图5

针刺末端执行器"

图6

控制系统硬件组成"

图7

控制系统内部通信示意图"

图8

双工位针刺机器人系统程序运行流程图"

图9

基于K-ROSET的针刺运动仿真"

图10

双工位针刺机器人系统样机"

图11

针刺轨迹模拟和双工位实验验证"

[1] CHEN X, CHEN L, ZHANG C, et al. Three-dimensional needle-punching for composites: a review[J]. Composites Part A: Applied Science and Manufacturing, 2016, 85: 12-30.
[2] YAO T, CHEN X, LI J, et al. Significantly improve the interlayer and in-plane properties of needled fabrics by novel none-felt needling technology[J]. Composite Structures, 2021, 274(1):1-9.
[3] JI A, CUI H, LI H, et al. Performance analysis of a carbon cloth/felt layer needled preform[J]. New Carbon Materials, 2011, 26(2): 109-116.
[4] 刘宇峰, 俸翔, 王金明, 等. 高性能针刺碳/碳复合材料的制备与性能[J]. 无机材料学报, 2020, 35(10):1105-1111.
doi: 10.15541/jim20190607
LIU Yufeng, FENG Xiang, WANG Jinming, et al. Preparation and properties of high-performance needled carbon/carbon composites[J]. Journal of Inorganic Materials, 2020, 35(10):1105-1111.
doi: 10.15541/jim20190607
[5] CHEN T, LIAO J, LIU G, et al. Effects of needle-punched felt structure on the mechanical properties of carbon/carbon composites[J]. Carbon, 2003, 41(5): 993-999.
[6] OLRY P. Process and apparatus for manufacturing axi-symmetrical three-dimensional structures: 19840685056[P]. 1986-11-11.
[7] HERVE E, LE H, GARETH C, et al. Installation and a method for needling a fiber preform while controlling the contact pressure of the stripper: US20180274144A1[P]. 2018-9-27.
[8] CHEN X, ZHANG Y, XIE J, et al. Robot needle-punching path planning for complex surface preforms[J]. Robotics and Computer-Integrated Manufacturing, 2018. DOI:10.1016/j.rcim.2018.02.004.
[9] CHEN X, ZHAO Y, ZHANG C, et al. Robot needle-punching for manufacturing composite preforms[J]. Robotics and Computer-Integrated Manufacturing, 2018. DOI:/10.1016/j.rcim.2017.09.008.
[10] 蒋云, 王耀武, 陈美琴. 一种双工位机器人针刺设备: 202022675605.4[P].2021-10-22.
JIANG Yun, WANG Yaowu, CHEN Meiqin. A dual-station robot acupuncture equipment: 202022675605.4[P].2021-10-22.
[11] 李皎, 陈利, 姚天磊, 等. 类回转预制体针刺机器人系统设计[J]. 纺织学报, 2023, 44(7): 207-213.
LI Jiao, CHEN Li, YAO Tianlei, et al. Design of needling robot system for quasi-rotary preforms[J]. Journal of Textile Research, 2023, 44(7): 207-213.
[1] 王辉, 周伟, 陈一哲, 龙晚昕, 王金伙. 三角形编织工艺数字化建模方法[J]. 纺织学报, 2024, 45(06): 75-81.
[2] 王建萍, 朱妍西, 沈津竹, 张帆, 姚晓凤, 于卓灵. 软体机器人在服装领域的应用进展[J]. 纺织学报, 2024, 45(05): 239-247.
[3] 李珣, 李哲文, 张婷文, 景军锋, 李鹏飞. 面向纺织生产环境的移动机器人定位方法[J]. 纺织学报, 2023, 44(12): 170-180.
[4] 孙磊, 屠佳佳, 毛慧敏, 王俊茹, 史伟民. 针织智能车间自动换筒任务调度技术[J]. 纺织学报, 2023, 44(12): 189-196.
[5] 戴宁, 梁汇江, 胡旭东, 戚栋明, 徐郁山, 屠佳佳, 史伟民. 插管式机器人空管状态检测方法[J]. 纺织学报, 2023, 44(11): 199-207.
[6] 梅宝龙, 董九志, 任洪庆, 蒋秀明. 基于多维度建模的碳/碳软硬混编预制体孔隙分析与单胞模型[J]. 纺织学报, 2023, 44(09): 108-115.
[7] 李皎, 陈利, 姚天磊, 陈小明. 类回转预制体针刺机器人系统设计[J]. 纺织学报, 2023, 44(07): 207-213.
[8] 陈小明, 任志鹏, 郑宏伟, 吴凯杰, 苏星兆, 陈利. 基于预/主刺协同的针刺织物力学性能提升方法[J]. 纺织学报, 2023, 44(04): 100-107.
[9] 宋洁心, 付天宇, 李凤鸣, 宋锐, 李贻斌. 基于延展性的机器人面料缝制张力预测方法[J]. 纺织学报, 2022, 43(12): 173-180.
[10] 张洁, 徐楚桥, 汪俊亮, 郑小虎. 数据驱动的机器人化纺织生产智能管控系统研究进展[J]. 纺织学报, 2022, 43(09): 1-10.
[11] 郑小虎, 刘正好, 陈峰, 刘志峰, 汪俊亮, 侯曦, 丁司懿. 环锭纺纱全流程机器人自动化生产关键技术[J]. 纺织学报, 2022, 43(09): 11-20.
[12] 吴乐, 张倩, 杨万然, 徐朝月, 王维冠, 侯曦. 基于增强现实技术的筒子纱印染锁扣机器人运维巡检系统研究[J]. 纺织学报, 2022, 43(09): 34-40.
[13] 屠佳佳, 孙磊, 毛慧敏, 戴宁, 朱婉珍, 史伟民. 圆纬机纱架自动换筒技术[J]. 纺织学报, 2022, 43(07): 178-185.
[14] 陈小明, 李皎, 张一帆, 谢军波, 姚天磊, 陈利. 基于上位机的层间角联锁织物用织机开口控制系统设计[J]. 纺织学报, 2022, 43(04): 174-179.
[15] 莫帅, 周长鹏, 李旭, 杨振宁, 刘辉华, 高瀚君. 机器人智能关节驱控结构一体化设计方法研究[J]. 纺织学报, 2022, 43(03): 160-167.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!