纺织学报 ›› 2024, Vol. 45 ›› Issue (10): 55-63.doi: 10.13475/j.fzxb.20230505801

• 纺织工程 • 上一篇    下一篇

基于环锭纺的三组分负泊松比纱制备及其性能

郭晨宇, 蒋云, 杨瑞华()   

  1. 江南大学 纺织科学与工程学院, 江苏 无锡 214122
  • 收稿日期:2023-05-23 修回日期:2023-10-10 出版日期:2024-10-15 发布日期:2024-10-22
  • 通讯作者: 杨瑞华(1981—),女,教授,博士。主要研究方向为新型纺纱方法。E-mail:yangrh@jiangnan.edu.cn
  • 作者简介:郭晨宇(1998—),女,硕士生。主要研究方向为纺纱新技术。
  • 基金资助:
    国家自然科学基金面上项目(52273034);江苏省自然科学基金面上项目(BK20181350)

Preparation and performance of three-component helical auxetic yarn based on ring spun

GUO Chenyu, JIANG Yun, YANG Ruihua()   

  1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2023-05-23 Revised:2023-10-10 Published:2024-10-15 Online:2024-10-22

摘要:

为扩大螺旋包缠结构的负泊松比纱的应用范围,在传统双长丝负泊松比纱基础上增加短纤维组分,通过环锭纺复合纱生产技术,设计了新型三组分螺旋包缠结构和成形方法。以棉粗纱、涤纶长丝、氨纶长丝为纺纱原料,将棉纤维和涤纶长丝包缠在氨纶芯丝上,得到基于螺旋包缠结构的三组分负泊松比纱。将其与双长丝负泊松比纱进行对比分析,并进一步讨论纱线结构对负泊松比效果的影响。借助电子单纱强力仪和图像连续采集装置,对纱线泊松比性能进行测量和分析。实验结果表明:三组分负泊松比纱与双长丝负泊松比纱的最大负泊松比值相近,同时三组分负泊松比纱在较长应变下保持相对稳定的负泊松比效果;其最大的负泊松比值可达-4.66。

关键词: 负泊松比纱线, 螺旋包缠结构, 复合纱, 纱线结构, 工艺参数

Abstract:

Objective Auxetic components can be used to create functional auxetic composite materials. The helical auxetic yarn (HAY) belongs to the group of auxetic reinforcement materials. Traditional auxetic yarns, made from filaments with a helical structure, often face issues like component slippage that can reduce yarn stability. They also lack the natural crimp and soft texture of staple fibers, which restricts their surface properties and applications. To address these challenges, this paper presents an innovative production method for helical auxetic yarns that incorporates staple fibers into the spiral wrapping structure. The aim is to enhance the yarn's auxetic performance and expand its range of applications.

Method Composite yarn was spun on a modified ring spinning machine to create a helical auxetic yarn based on the wrapping structure, with cotton and polyester filaments wrapped around a spandex filament. Besides, the double-filament helical auxetic yarn without cotton was also produced. The auxetic performance characteristics of these two types of yarns were analyzed and compared. Based on the spinning parameters, the effect of the yarn construction parameters on the negative Poisson's ratio was further investigated.

Results In this study, the negative Poisson's ratio of the new developed three-component and conventional two-component helical auxetic yarns was compared and analyzed. The maximum negative Poisson's ratios of the two yarns were similar, both less than -2, and the negative Poisson's ratio of two-component yarn was slightly better. In addition, the three-component helical auxetic yarn achieved a maximum negative Poisson's ratio at less strain compared with two-component yarn. Furthermore, after achieving the best negative Poisson's ratio, the Poisson's ratio of the three-component helical auxetic yarn was maintained below -0.5 with a tensile strain of 5% to 15%. However, after the two-component yarn reached the maximum negative Poisson's ratio, the negative Poisson's ratio effect of the yarn showed the weaking tread, flattening and approaching zero after 13% tensile strain. The influence of structural parameters of the helical auxetic yarn on the negative Poisson's ratio effect was discussed based on the spinning process parameters. Firstly, at a twist factor of 325, i.e., a helix angle of 27.4°, the negative Poisson's ratio effect was most obvious and its peak is at a 3% tensile strain. As the yarn twist factor increased, the negative Poisson's ratio effect diminished and larger tensile strain was required for reaching the maximum negative Poisson's ratio. Secondly, when the draft ratio of the wrapping filament was higher, the maximum negative Poisson's ratio of the helical auxetic yarn was initially increased and then decreased. When the draft ratio of the wrapped filament was 1.03, the negative Poisson's ratio was -3.24 which was the highest value among all the types of yarns. Thirdly, the draft ratio of the elastic core filament has negative effect on the maximum negative Poisson's ratio of the yarn. When the draft ratio of elastic core filament was 1.01 and 1.02, the negative Poisson's ratio of helical auxetic yarn was the best and similar, both less than -3.

Conclusion The enhancement of ring spinning machinery has facilitated the fabrication of a three-component auxetic yarn incorporating cotton fibers, thereby introducing an innovative approach to the design of auxetic yarns. The spinning process parameters, encompassing the twist factor as well as the drafting ratios of the core filament and the wrapping filament, exert a pronounced influence on the auxetic performance of the yarn. A comparative analysis of the auxetic properties of yarns manufactured under varying process parameters has yielded critical insights for optimizing the production process. This has led to the development of yarns that exhibit superior and consistent auxetic characteristics, thereby expanding the horizons and potential applications of auxetic materials within the textile industry.

Key words: auxetic yarn, helical wrapping structure, complex yarn, yarn structure, process parameter

中图分类号: 

  • TS106.4

图1

三组分负泊松比纱结构变形图"

图2

三组分负泊松比纱的成纱装置图 1—非弹性长丝;2—张力调节片;3—粗纱;4—非弹性长丝导丝辊;5—弹性芯丝;6—双槽导丝轮;7—弹性长丝导丝辊;8—罗拉;9—细纱。"

表1

纱线的材料和参数"

名称 纱线组分 纱线材料
三组分负泊松比纱 芯纱 80 tex氨纶长丝
第1包缠纱 30 tex棉粗纱
第2包缠纱 8.33 tex涤纶长丝
双长丝负泊松比纱 芯纱 80 tex氨纶长丝
包缠纱 8.33 tex涤纶长丝

图3

双长丝负泊松比纱拉伸形变图"

图4

三组分负泊松比纱拉伸形变图"

图5

双长丝与三组分负泊松比纱的泊松比曲线"

图6

不同捻系数下的初始螺旋角"

图7

不同捻系数下的纱线泊松比曲线"

图8

不同包缠长丝牵伸倍数下的纱线负泊松比曲线"

图9

不同包缠长丝牵伸倍数下的纱线初始形态"

图10

不同弹性芯丝牵伸倍数下的纱线负泊松比曲线"

图11

优化工艺参数下的纱线泊松比曲线"

[1] LAKES R. Foam structures with a negative Poisson's ratio[J]. Science, 1987, 235(4792): 1038-1041.
pmid: 17782252
[2] ULLAH T, HUSSAIN M, ALI M, et al. Impact of auxeticity on mechanical properties of 3D woven auxetic reinforced thermoplastic composites[J]. Polymer Composites, 2023, 44(2): 897-906.
[3] 徐婉丽, 常玉萍, 马丕波. 负泊松比经编间隔织物的抗低速冲击性能[J]. 纺织学报, 2018, 39(11): 45-49.
doi: 10.13475/j.fzxb.20180105105
XU Wanli, CHANG Yuping, MA Pibo. Low velocity impact resistance of warp-knitted spacer fabrics of negative Poisson's ratio[J]. Journal of Textile Research, 2018, 39(11): 45-49.
doi: 10.13475/j.fzxb.20180105105
[4] 常玉萍, 马丕波. 负泊松比经编间隔织物的准静态拉伸性能[J]. 纺织学报, 2018, 39(4): 47-53.
CHANG Yuping, MA Pibo. Tensile properties under quasi-static of auxetic warp-knitted spacer fabrics[J]. Journal of Textile Research, 2018, 39(4): 47-53.
[5] TAHIR D, ZHANG M, HU H. Auxetic materials for personal protection: a review[J]. Physica Status Soli-di (B), 2022, 259(12): 1-13.
[6] ANDREA S, DAVIDE C. Negative Poisson's ratio lattice for designing vertebral biomaterials[J]. Mechanics of Advanced Materials and Structures, 2021, 29(27): 1-8.
[7] CHEN L J, CHEN C Y, JIN L, et al. Stretchable negative Poisson's ratio yarn for triboelectric nanogenerator for environmental energy harvesting and self-powered sensor[J]. Energy and Environmental Science, 2021, 14(2): 955-964.
[8] 周铭, 杜赵群. 负泊松比结构纺织材料的研究进展[J]. 纺织学报, 2014, 35(2): 99-108.
ZHOU Ming, DU Zhaoqun. Research advances in negative Poisson's ratio structured textile mate-rials[J]. Journal of Textile Research, 2014, 35(2): 99-108.
[9] CHEN J L, DU Z Q. Structural design and performance characterization of stable helical auxetic yarns based on the hollow-spindle covering system[J]. Textile Research Journal, 2020, 90(3/4): 271-281.
[10] 刘赛, 郑冬明, 潘行星, 等. 交叉螺旋结构拉胀纱线及其织物的成形与表征[J]. 纺织学报, 2019, 40(2): 26-29.
LIU Sai, ZHENG Dongming, PAN Xingxing, et al. Formation and characterization of auxetic yarns with interlaced-helical structure and fabrics[J]. Journal of Textile Research, 2019, 40(2): 26-29.
[11] 刘赛, 杜赵群, 于伟东. 负泊松比功能的结构复合纺纱技术进展[J]. 毛纺科技, 2020, 48(6): 8-12.
LIU Sai, DU Zhaoqun, YU Weidong. Spinning technology of complex structure with negative Poisson's ratio[J]. Wool Textile Journal, 2020, 48(6): 8-12.
[12] LIM T C. Semi-auxetic yarns[J]. Physica Status Solidi(B), 2014, 251(2): 273-280.
[13] ZHANG G, GHITA O, EVANS K E. The fabrication and mechanical properties of a novel 3-component auxetic structure for composites[J]. Composites Science and Technology, 2015, 117: 257-267.
[14] MUSHTAQ B, AHMAD A, ALI Z, et al. Core spun based helical auxetic yarn: a novel structure for wearable protective textiles[J]. Journal of Natural Fibers, 2022, 19(16): 1-13.
[15] MILLER W, REN Z, SMITH C W, et al. A negative Poisson's ratio carbon fibre composite using a negative Poisson's ratio yarn reinforcement[J]. Composites Science and Technology, 2012, 72(7): 761-766.
[16] WRIGHT J R, SLOAN M R, EVANS K E. Tensile properties of helical auxetic structures: a numerical study[J]. Journal of Applied Physics, 2010, 108(4): 124-707.
[17] 郭宇微. 抗菌保暖包芯包缠复合纱的生产[J]. 棉纺织技术, 2021, 49(5): 56-60.
GUO Yuwei. Production of antibacterial thermal insulation core-wrapped composite yarn[J]. Cotton Textile Technology, 2021, 49(5): 56-60.
[18] 李丹丹, 权利军, 金肖克, 等. 氨纶与双组分复合长丝/棉包芯纱的拉伸弹性[J]. 纺织学报, 2017, 38(5): 31-36.
LI Dandan, QUAN Lijun, JIN Xiaoke, et al. Tensile elasticity of spandex and bi-component filament/cotton core-spun yarn[J]. Journal of Textile Research, 2017, 38(5): 31-36.
[19] 周铭. 负泊松比纱线的结构成形及建模表征[D]. 上海: 东华大学, 2014: 26-28.
ZHOU Ming. Study on structure formation and modeling of negative Poisson's ratio yarn[D]. Shanghai: Donghua University, 2014: 26-28.
[20] LIU S, CHEN H Y, LI Y Z, et al. Design, Manufacture, and characterization of auxetic yarns with multiple core/wrap structure by braiding method[J]. Materials, 2022, 15(18): 6300-6308.
[1] 杨瑞华, 邵秋, 王翔. 再循环棉及涤纶短纤维的成纱性能与面料特征[J]. 纺织学报, 2024, 45(08): 127-133.
[2] 李文雅, 周剑, 廖昙倩, 董真真. 薄鞘高包覆涤纶/棉包芯纱的结构控制及其工艺[J]. 纺织学报, 2024, 45(06): 46-52.
[3] 周歆如, 范梦晶, 岳欣琰, 洪剑寒, 韩潇. 导电微纳纤维复合纱的制备及其气敏特性[J]. 纺织学报, 2024, 45(02): 52-58.
[4] 左祺, 吴华伟, 王春红, 杜娟娟. 纱线结构对苎麻短纤纱复合材料拉伸性能的影响[J]. 纺织学报, 2023, 44(10): 81-89.
[5] 张华, 刘帅, 杨瑞华. 长丝包覆复合包芯纱拉伸性能建模研究[J]. 纺织学报, 2023, 44(08): 57-62.
[6] 刘帅, 郭晨宇, 陈鹤文, 杨瑞华. 赛络菲尔包缠纱结构建模分析与性能优化[J]. 纺织学报, 2023, 44(04): 63-69.
[7] 史晶晶, 杨恩龙. 赛络纺棉/毛段彩纱结构及其性能[J]. 纺织学报, 2023, 44(03): 55-59.
[8] 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100.
[9] 汪军, 史倩倩, 李玲, 张玉泽. 双喂给双分梳转杯纺技术研究进展[J]. 纺织学报, 2022, 43(08): 12-20.
[10] 曹巧丽, 李豪, 钱丽莉, 郁崇文. 条混工艺参数对混合效果的影响[J]. 纺织学报, 2022, 43(02): 81-88.
[11] 李凤艳, 叶天宇, 展晓晴, 赵健, 李聃阳, 王瑞. 涤纶与芳纶及超高分子量聚乙烯纤维复合纱防刺织物的制备及其性能[J]. 纺织学报, 2021, 42(07): 82-88.
[12] 李浩, 邢明杰, 孙志豪, 吴瑶. 基于图像的喷气涡流纺纱线捻度测试方法探讨[J]. 纺织学报, 2021, 42(02): 60-64.
[13] 马丽芸, 吴荣辉, 刘赛, 张玉泽, 汪军. 包缠复合纱摩擦纳米发电机的制备及其电学性能[J]. 纺织学报, 2021, 42(01): 53-58.
[14] 魏艳红, 刘新金, 谢春萍, 苏旭中, 张钟唏. 聚酯长丝/棉复合纱斜纹织物的保形性及服用性能[J]. 纺织学报, 2019, 40(12): 39-44.
[15] 敖利民, 唐雯, 姜银玲. 亚麻长麻/涤纶长丝复合纱的纺制及其性能比较[J]. 纺织学报, 2019, 40(11): 38-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!