纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 113-119.doi: 10.13475/j.fzxb.20230506001

• 染整工程 • 上一篇    下一篇

耐久型水性杂化无氟防水剂的制备及其性能

马逸平1,2, 樊武厚1,2,3(), 胡晓1,4, 王斌1,2, 李林华1,2, 梁娟1,2, 吴晋川1,4, 廖正科1,3,4   

  1. 1.四川省纺织科学研究院有限公司, 四川 成都 610083
    2.高性能有机纤维四川省重点实验室,四川 成都 610083
    3.川浙印染产业技术研究院, 四川 成都 610083
    4.四川益欣科技有限责任公司, 四川 成都 610083
  • 收稿日期:2023-05-23 修回日期:2024-03-04 出版日期:2024-06-15 发布日期:2024-06-15
  • 通讯作者: 樊武厚(1988—),男,高级工程师,博士。主要研究方向为功能纺织化学品及生态印染助剂。E-mail:fanwuhou1988@163.com
  • 作者简介:马逸平(1994—),女,工程师,硕士。主要研究方向为无氟防水整理剂。
  • 基金资助:
    四川省自然科学基金项目(2022NSFSC0304);四川省省级科研院所科技成果转化项目(2023JDZH0008);高技术有机纤维四川省重点实验室开放基金资助项目(PLN2023-18)

Preparation and application of durable aqueous organic-inorganic hybrid fluorine-free water-repellant finishing agents

MA Yiping1,2, FAN Wuhou1,2,3(), HU Xiao1,4, WANG Bin1,2, LI Linhua1,2, LIANG Juan1,2, WU Jinchuan1,4, LIAO Zhengke1,3,4   

  1. 1. Sichuan Textile Scientific Research Institute Co., Ltd., Chengdu, Sichuan 610083, China
    2. High-tech Organic Fibers Key Laboratory of Sichuan Province, Chengdu, Sichuan 610083, China
    3. Sichuan & Zhejiang Industrial Technology Research Institute of Printing and Dyeing, Chengdu, Sichuan 610083, China
    4. Sichuan Yixin Technology Co., Ltd., Chengdu, Sichuan 610083, China
  • Received:2023-05-23 Revised:2024-03-04 Published:2024-06-15 Online:2024-06-15

摘要:

针对当前无氟防水剂整理织物耐久性不佳的问题,引入低表面能聚硅氧烷链段和长碳链十六烷基,并通过对硅溶胶乳液进行氨基改性以提高有机硅改性聚氨酯有机组分和十六烷基改性硅溶胶无机组分的界面作用,制备了一种耐久型水性杂化无氟防水剂,并将其应用于涤纶/棉织物的防水整理。研究了防水剂的硅溶胶组分中氨基硅烷偶联剂质量分数、焙烘温度等因素对织物防水性能及防水耐久性能的影响,考察了防水整理织物的表面形貌及对不同液体的防水效果。结果表明:当γ-氨丙基三乙氧基硅烷(KH-550)质量分数为1.5%,焙烘温度为160 ℃时,防水剂可在涤纶/棉织物表面形成微纳米尺寸的粗糙结构的拒水膜,水接触角可达131.8°;经20次标准洗涤后,织物的水接触角仍可维持在129°,表现出良好的耐水洗性能。

关键词: 无氟防水剂, 防水整理, 有机-无机杂化, 功能性纺织品

Abstract:

Objective Fabrics with water-repellent finishing have been extensively favored by consumers as one of the most widely used functional fabrics, and hydrophobic coatings and their applications prospects attract interests from both the academic and industrial comunities. However, their application is hindered by some major bottlenecks, especially the poor durability. Therefore, a method for preparing hydrophobic coatings with excellent mechanical stability is urgently necessary.

Method To tackle the poor durability of water-repellent finishing fabrics, this study innovatively introduced low surface energy polysiloxane segments and long carbon chain hexadecyl at the same time. A novel durable water-based hybrid fluorine-free water-repellant finishing agents (NSW) were prepared by amino modification of silica sol emulsion to enhance the interfacial interaction between the organic and inorganic components. This modification corresponded to the long-chain alkyl silane modified sol emulsion and polysiloxane modified waterborne polyurethane emulsion respectively. The specific methods used were described below. A polysiloxane modified polyurethane prepolymer (SiWPU) was synthesized through the polyaddition reaction of polydimethylsiloxane (PDMS), polyethylene glycol (PEG), dimethylol propionic acid (DMPA) and isophorone diisocyanate (IPDI). A method of the long-chain alkyl silane and amino modified sol emulsion (Si-NPs) was provided through the hydrolysis polycondensation reaction of hexadecyl trimethoxysilane (HDTMS), silane coupling agent (KH-550) and tetraethyl silicate (TEOS). Si-NPs were added drop by drop in the emulsification process of Si-WPU, silica nanoparticles were adhered to the polyurethane chain segment taking advantage of the difference in the rate of isocyanate group react with amino and hydroxyl group, and isocyanate group exhibits a higher rate of reaction with amino compared with hydroxyl group.

Results The chemical composition of Si-NPs and NSW were investigated using Fourier transform infrared spectroscopy. The most stable emulsion was achieved when KH-550 mass fraction was 1.5% (Si-NPs-1.5 and NSW-1.5), and the stability analysis of Si-NPs and NSW-1.5 were demonstrated using particle size tester and Zeta potential analyzer. In addition, the research also focused on the hydrophobic effects of the amount of aminosilane coupling agent in the silica sol. Baking temperature on the property of finished polyester/cotton fabric was also discussed in detail, and the hydrophobic performance and the wash resistance on the surface of finished polyester/cotton fabric were also investigated. It was found that when the mass ratio of KH-550 was 1.5% and the baking temperature remained at 160 ℃, NSW formed a complete water-repellent membrane. Under the conditions of these application environment on the surface of treated fabric with water contact angle (WCA) of 131.8°, the WCA of the treated fabric dropped by only 2.8°after 20 rubbing cycles and exhibited good washability. The surface morphology of the treated polyester/cotton fabric before and after washing was observed in order to study the water wash resistance on the surface of finished polyester/cotton fabric more intuitively, and the results of SEM images showed that micro-nano rough structures existed on the surface of finished polyester/cotton fabric. Additionally, the repellent effect of the treated fabric on different liquids was also studied to demonstrate the above viewpoint.

Conclusion It is confirmed through the research that when the mass ratio of KH-550 is 1.5% and the baking temperature remains at 160 ℃, the surface of the finished fabric exhibits the best water resistance performance. In view of the poor durability of finishing agents, a method for preparing fully aqueous and organic-inorganic hybrid fluorine-free water-repellant finishing agents was identified, which is to combine the long-chain alkyl silane modified sol emulsion and polysiloxane modified waterborne polyurethane emulsion for the stable preparation of waterproofing agents.

Key words: fluorine-free water-repellant finishing agent, water-repellant finishing, organic-inorganic hybrid, functional textile

中图分类号: 

  • TS190.8

表1

Si-NPs、NSW的粒径及Zeta电位"

样品名称 粒径/nm Zeta电位/mV
Si-NPs-0 97.3 -39.3
NSW-0 187.4 -38.7
Si-NPs-0.5 111.3 -38.9
NSW-0.5 223.4 -36.4
Si-NPs-1.0 119.8 -35.0
NSW-1.0 246.7 -32.8
Si-NPs-1.5 139.7 -32.7
NSW-1.5 390.2 -31.3
Si-NPs-2.0 209.3 -26.4
NSW-2.0

图1

NSW和IPDI的红外图谱"

图2

KH-550和Si-NPs-1.5乳液的红外图谱"

图3

Si-NPs乳液中KH-550质量分数对整理织物水接触角的影响"

图4

Si-NPs乳液中KH-550质量分数对整理织物耐洗性能的影响"

图5

焙烘温度对整理织物水接触角的影响"

图6

焙烘温度对整理织物耐洗性能的影响"

图7

原始涤纶/棉织物和水洗前后整理织物的SEM照片(×2 000)"

图8

水洗前后防水整理织物的接触角图和不同液体的防水效果图"

[1] CHU S, LETCHER R J. In vitro metabolic formation of perfluoroalkyl sulfonamides from copolymer surfactants of pre- and post-2002 scotchgard fabric protector pro-ducts[J]. Environmental Science & Technology, 2014, 3(27):184-191.
[2] LIU J, JIA Y, JIANG Q, et al. Highly conductive hydrogel polymer fibers toward promising wearable thermoelectric energy harvesting[J]. Journal of Materials Chemistry A, 2018, 10(50): 44033-44040.
[3] HU X, CHEN G, WANG X, et al. Tuning thermoelectric performance by nanostructure evolution of a conducting polymer[J]. Journal of Materials Chemistry A, 2015, 3(42):20896-20902.
[4] XU Q B, WANG L J, FU F Y, et al. Fabrication of fluorine-free superhydrophobic cotton fabric using fumed silica and diblock copolymer via mist modification[J]. Progress in Organic Coatings, 2020, 11 (148):84-89.
[5] 尚轲, 任文君, 徐天祺, 等. 基于有机硅改性聚氨酯/二氧化硅的超疏水棉织物制备及其性能分析[J]. 浙江理工大学学报, 2024, 51(1):82-90.
SHANG Ke, REN Wenjun, XU Tianqi, et al. Preparation and performance analysis of superhydrophobic cotton fabrics based on silicone-modified on silicone-modified polyurethene/silica[J]. Journal of Zhejiang Sci-Tech University, 2024, 51(1):82-90.
[6] 马逸平, 樊武厚, 吴晋川, 等. 水性耐久杂化型无氟织物防水剂的制备及应用[J]. 纺织学报, 2022, 43(2):183-188.
MA Yiping, FAN Wuhou, WU Jinchuan, et al. Preparation and application of fully aqueous organic-inorganic hybrid fluorine-free water repellant finishing agents[J]. Journal of Textile Research, 2022, 43(2):183-188.
[7] 王海峰, 武迪, 张小玲, 等. 有机硅嵌段水性聚氨酯整理剂的合成和应用[J]. 印染, 2017, 16 (3):37-40.
WANG Haifeng, WU Di, ZHANG Xiaoling, et al. Synthesis and application of organosilicon block waterborne polyurethane finishing agent[J]. China Dyeing & Finishing, 2017, 16(3):37-40.
[8] YE H, WANG J, LIANG F, et al. Simple spray deposition of a water-based superhydrophobic coating with high stability for flexible applications[J]. Journal of Materials Chemistry A, 2017, 5(20): 9882-9890.
[9] WU Q, HU J. A novel design for wearable thermoelectric generator based on 3D fabric struc-ture[J]. Smart Materials and Structures, 2017, 26(4): 61-65.
[10] GUO B, FENG X J, ZHU P H, et al. Simple one-pot approach toward robust and boiling-water resistant superhydrophobic cotton fabric and the application in oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(41): 21866-21874.
[11] YANG C A, TAN Q, ZHONG G Q, et al. Structure-property relationship of a series of novel mesogen-jacketed liquid-crystalline polymers containing semirigid side chain with different numbers of alkoxy terminal groups[J]. Polymer, 2010, 51 (2):422-429.
[12] KAZEM D S, SHAHIN T, AKBAR H. Facile route to synthesis of functionalised poly(methylalkoxy) siloxane under mild and aerobic conditions in the presence of platinum catalysts[J]. Journal of Organometallic Chemistry, 2009, 694(25):4107-4115.
[13] BAE Y M, KIM H S, LEE H, et al. Fabrication of hierarchical structures on a polymer surface to mimic natural superhydrophobic surfaces[J]. Advanced Materials, 2007, 19(17): 2330-2335.
[14] YANG C A, TAN Q, ZHONGG Q, et al. Structure-property relationship of a series of novel mesogen-jacketed liquid-crystalline polymers containing semirigid side chain with different numbers of alkoxy terminal groups[J]. Polymer, 2010, 51 (2):422-429.
[15] REN J J, GUO F, HU F, et al. A simple way to an ultra-robust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding property[J]. Journal of Colloid and Interface Science, 2018, 52(2): 57-62.
[16] ZHU M, XIAO B F, SHEN Z, et al. Facile fabrication of a superhydrophobic fabric with mechanical stability and easy-repairability[J]. Journal of Colloid and Interface Science, 2012, 380 (1): 182-186.
doi: 10.1016/j.jcis.2012.04.063 pmid: 22652590
[17] 陈迪, 黄杉, 杨园园, 等. 超浸润性γ-氨丙基三乙氧基硅烷-TiO2包覆织物的制备及其水净化性能[J]. 复合材料学报, 2022, 39(10): 4620-4630.
CHEN Di, HUANG Shan, YANG Yuanyuan, et al. Preparation of superwetting γ-amino-propyltriethoxysilane-TiO2 coated fabric and its water purification performances[J]. Acta Materiae Compositae Sinica, 2022, 39(10): 4620-4630.
[18] WANG D, SHAN F, LI G, et al. Definition of superhydrophobic states[J]. Advanced Materials, 2007, 19(21): 3423-3424.
[19] PAINTER J. Waterproof, breathable fabric laminates: a prospective from film to market place[J]. Journal of Coated Fabrics, 1996, 26 (10): 107-130.
[1] 李旭, 刘祥吉, 靳鑫, 杨承昊, 董朝红. 耐久高效磷/氮协同阻燃剂的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(07): 121-129.
[2] 李倩倩, 郭晓玲, 崔文豪, 许宇真, 王林峰. 汽车座椅用抗菌涤纶针织物制备及其性能[J]. 纺织学报, 2024, 45(06): 127-133.
[3] 韩华, 胡安然, 孙艺文, 丁作伟, 李伟, 张彩云, 郭增革. 碘释放抗菌涂层棉织物的制备及其在伤口修复中的应用[J]. 纺织学报, 2024, 45(05): 113-120.
[4] 向娇娇, 柳浩, 欧阳申珅, 马万彬, 柴丽琴, 周岚, 邵建中, 刘国金. 高疏水性双面结构生色棉织物的一步法制备[J]. 纺织学报, 2024, 45(04): 111-119.
[5] 胡自强, 骆晓蕾, 魏璐琳, 刘琳. 植酸/壳聚糖对涤纶/棉混纺织物的协同阻燃整理[J]. 纺织学报, 2024, 45(04): 126-135.
[6] 孙浪涛, 杨宇珊. 调温抗菌微胶囊的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(02): 171-178.
[7] 陈顺, 钱坤, 梁付巍, 郭文文. 丁香酚基复合涂层阻燃疏水棉织物的制备及其性能[J]. 纺织学报, 2023, 44(12): 115-122.
[8] 杨海富, 罗丽娟, 师建军, 马晓光, 郑振荣. 阻燃防水多功能涤纶篷布的制备及其性能[J]. 纺织学报, 2023, 44(06): 168-174.
[9] 刘欣宇, 李剑浩, 王震, 沈军炎, 杨雷. 复合型无氟聚丙烯酸酯乳液的制备及其防水性能[J]. 纺织学报, 2023, 44(04): 124-131.
[10] 方寅春, 陈吕鑫, 李俊伟. 阻燃超疏水涤/棉混纺织物的制备及其性能[J]. 纺织学报, 2022, 43(11): 113-118.
[11] 曹聪聪, 汤龙世, 刘元军, 赵晓明. 无机抗菌织物的研究进展[J]. 纺织学报, 2022, 43(11): 203-211.
[12] 杨辉宇, 周敬伊, 段子健, 徐卫林, 邓波, 刘欣. 原子层沉积在纺织品表面多功能改性研究进展[J]. 纺织学报, 2022, 43(09): 195-202.
[13] 熊坦平, 谭飞, 黄成, 阎克路, 邹妮, 王政, 叶敬平, 纪柏林. 氯胺接枝涤纶/锦纶超细纤维针织物的抗菌性能[J]. 纺织学报, 2022, 43(08): 101-106.
[14] 张广知, 方进. 生物质环保阻燃剂PD的制备及其阻燃性能[J]. 纺织学报, 2022, 43(07): 90-96.
[15] 黄益婷, 程献伟, 关晋平, 陈国强. 磷/氮阻燃剂对涤纶/棉混纺织物的阻燃整理[J]. 纺织学报, 2022, 43(06): 94-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!