纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 105-112.doi: 10.13475/j.fzxb.20230507301

• 染整工程 • 上一篇    下一篇

铁-三联吡啶配合物活化高碘酸盐体系构建及其对染色废水的催化降解机制

武守营1,2, 黄启超2, 张开封2, 张琳萍1,2,3, 钟毅1,2,3, 徐红1,2,3, 毛志平1,2,3()   

  1. 1.东华大学 化学与化工学院, 上海 201620
    2.东华大学 生态纺织教育部重点实验室, 上海 201620
    3.山东中康国创先进印染技术研究院有限公司 国家先进印染技术创新中心, 山东 泰安 271000
  • 收稿日期:2023-05-30 修回日期:2023-11-21 出版日期:2024-06-15 发布日期:2024-06-15
  • 通讯作者: 毛志平(1969—),男,研究员,博士。主要研究方向为纺织清洁印染加工及功能整理。E-mail:zhpmao@dhu.edu.cn
  • 作者简介:武守营(1992—),女,博士生。主要研究方向为金属配合物的制备及其催化性能研究。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(2232023G-04)

Construction of catalytic system by Fe(tpy)Cl3 complexes-activated periodate and its catalytic degradation mechanism for dyeing wastewater

WU Shouying1,2, HUANG Qichao2, ZHANG Kaifeng2, ZHANG Linping1,2,3, ZHONG Yi1,2,3, XU Hong1,2,3, MAO Zhiping1,2,3()   

  1. 1. College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Science and Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
    3. National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian, Shandong 271000, China
  • Received:2023-05-30 Revised:2023-11-21 Published:2024-06-15 Online:2024-06-15

摘要:

为开发新型、高效的染色废水处理方法,通过铁-三联吡啶(Fe(tpy)Cl3)配合物活化高碘酸盐(PI)构建了Fe(tpy)Cl3/PI催化氧化体系。在此基础上,采用酸性红1(AR1)作为染色废水模型污染物测试了该体系的催化降解性能,并通过捕获和探针实验研究了Fe(tpy)Cl3配合物活化PI降解酸性红1的机制。结果表明:Fe(tpy)Cl3配合物能够高效活化PI实现酸性红1的快速降解,15 min内对AR1的去除率高达98%;Fe(tpy)Cl3/PI体系对酸性红1的降解符合伪一级动力学模型,同时酸性红1的降解速率常数随Fe(tpy)Cl3配合物和PI浓度的增加而呈线性增加;在Fe(tpy)Cl3/PI体系中包含超氧自由基、单线态氧以及高价铁,这些活性物质共同促进酸性红1的降解;该体系不仅对多种有机物的降解表现出普适性,同时催化降解过程不受溶液pH值以及常见无机盐离子的干扰。

关键词: 配合物, 高碘酸盐, 染色废水, 降解, 催化机制, 废水处理, 铁-三联吡啶

Abstract:

Objective The dyeing wastewater poses a threat to the ecological environment. Advanced oxidation processes (AOPs) exhibit excellent oxidation efficiency in wastewater treatment. The solid-state and stability of periodate (PI) make it obtained wide attention. As a result, PI-based AOPs are gradually gaining research and being tried for the treatment of dyeing wastewater. However, current transition metal-based activators for PI often require larger doses to obtain the desired effect, which undoubtedly increases the cost of wastewater treatment. Metal coordination complexes are applied similarly to biological enzymes, with trace and efficient application effects. This study aimed to construct a novel catalytic system by activating PI by Fe(tpy)Cl3 complex to investigate its application prospects in wastewater treatment and to elucidate the catalytic mechanism.

Method The catalytic degradation performance of the Fe(tpy)Cl3/PI system was tested using the dye Acid Red 1 (AR1) as the target pollutant. The effects of catalyst and oxidant dosage, pH, and temperature on the catalytic performance of this system were explored. Meanwhile, the catalytic mechanism of the system was investigated by capture and probe experiments. Moreover, the practical application prospects of the system were evaluated by testing the degradation efficiency of various organics and the resistance to inorganic salt ions.

Results The result showed that the Fe(tpy)Cl3 complexes have excellent activation effects on PI, which could remove 98% of AR1 within 15 min. More importantly, the performance of the Fe(tpy)Cl3/PI system is much higher than that of the previously reported Fe(tpy)Cl3/H2O2 system. Meanwhile, the test results show that the concentration of Fe(tpy)Cl3 and PI has a great influence on the performance of the Fe(tpy)Cl3/PI system. In detail, the degradation of AR1 in the Fe(tpy)Cl3/PI system is following the pseudo-first-order kinetic model, while the rate constant of AR1 degradation increase linearly with the increase of Fe(tpy)Cl3 and PI dose. Moreover, the results show that the catalytic performance of Fe(tpy)Cl3/PI system is almost independent of pH and could achieve efficient degradation of the dye over a wide pH range (3-9). Also, the increase in temperature could increase the catalytic activity of the Fe(tpy)Cl3/PI system and accelerate the degradation of AR1. In addition, the active species in this system were investigated using methanol, benzoquinone, and furfuryl alcohol as hydroxyl radical, superoxide radical, and singlet oxygen trapping agents, respectively, and PMSO as a probe for high-valent metal-oxo. The results of mechanism studies show that Fe(tpy)Cl3/PI system includes superoxide radicals, singlet oxygen, and high-valent metal-oxo, and these active species together promote the degradation of AR1. The removal rates of sulfamethoxazole, 2,4-dichlorophenol, 2,4,6-trichlorophenol, and rhodamine B in the Fe(tpy)Cl3/PI system are 100%, 81%, 89%, and 89%, respectively, indicating that the Fe(tpy)Cl3/PI system is well suited for the removal of most organics. Inorganic salt ions are usually included in the actual organic wastewater. The results show that the catalytic system is not disturbed by common inorganic salt ions for the degradation of organic matter and has good prospects for practical application.

Conclusion Fe(tpy)Cl3 has excellent activation performance for PI, and the removal rate of AR1 is up to 98% within 15 min, which is much higher than the conventional Fe(tpy)Cl3/H2O2 system. Compared with other iron-based catalysts, Fe(tpy)Cl3 complexes are simple to prepare and require only minute doses to achieve efficient degradation of organic matter, which helps to reduce the economic cost of wastewater treatment. In addition, the system shows universality for the degradation of various organics, and the catalytic degradation process do not interfere with the solution pH and common inorganic salt ions, which makes this system excellent prospect for practical wastewater treatment applications. Overall, this study provides a novel PI activator and also provides an efficient method for dyeing wastewater treatment.

Key words: coordination complex, periodate, dyeing wastewater, degradation, catalytic mechanism, wastewater treatment, Fe (tpy) Cl3

中图分类号: 

  • TS190.3

图1

不同体系对AR1的降解情况对比"

图2

FeⅢ(tpy)Cl3和PI浓度对FeⅢ(tpy)Cl3/PI体系催化性能的影响"

图3

pH值和温度对FeⅢ(tpy)Cl3/PI体系催化性能的影响"

图4

FeⅢ(tpy)Cl3/PI体系中活性物质的鉴定结果"

图5

FeⅢ(tpy)Cl3/PI体系的应用性能"

[1] AL-TOHAMY Rania, ALI Sameh S, LI Fanghua, et al. A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety[J]. Ecotoxicology and Environental Safety, 2022. DOI:10.1016/j.ecoenv.2021.113160.
[2] TKACZYK Angelika, MITROWSKA Kamila, POSYNIAK Andrzej. Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review[J]. Science of the Total Environment, 2020. DOI:10.1016/j.scitotenv.2020.137222.
[3] ZHU Yanping, ZHU Runliang, XI Yunfei, et al. Strategies for enhancing the heterogeneous Fenton catalytic reactivity: a review[J]. Applied Catalysis B: Environmental, 2019. DOI:10.1016/j.apcatb.2019.05.041.
[4] KOHANTORABI Mona, MOUSSAVI Gholamreza, GIANNAKIS Stefanos. A review of the innovations in metal- and carbon-based catalysts explored for heterogeneous peroxymonosulfate (PMS) activation, with focus on radical vs. non-radical degradation pathways of organic contaminants[J]. Chemical Engineering Journal, 2021. DOI:10.1016/j.cej.2020.127957.
[5] WANG Jianlong, WANG Shizong. Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contami-nants[J]. Chemical Engineering Journal, 2018. DOI:10.1016/j.cej.2017.11.059.
[6] ULUCAN-ALTUNTAS Kubra, GUVENC Senem Yazici, CAN-GUVEN Emine, et al. Degradation of oxytetracycline in aqueous solution by heat-activated peroxydisulfate and peroxymonosulfate oxidation[J]. Environmental Science and Pollution Research, 2022, 29(6): 9110-9123.
[7] YANG Lie, HE Liuyang, MA Yongfei, et al. Periodate-based oxidation focusing on activation, multivariate-controlled performance and mechanisms for water treatment and purification[J]. Separation and Purification Technology, 2022. DOI:10.1016/j.seppur.2022.120746.
[8] LING Chen, WU Shuai, HAN Jiangang, et al. Sulfide-modified zero-valent iron activated periodate for sulfadiazine removal: performance and dominant routine of reactive species production[J]. Water Research, 2022. DOI:10.1016/j.watres.2022.118676.
[9] YU Yanghai, DONG Hongyu, LIAN Lushi, et al. Selective and rapid degradation of organic contaminants by Mn(V) generated in the Mn(II)-nitrilotriacetic acid/periodate process[J]. Chemical Engineering Journal, 2022. DOI:10.1016/j.cej.2022.136387.
[10] BOKARE Alok D, CHOI Wonyong. Singlet-oxygen generation in alkaline periodate solution[J]. Environmental Science & Technology, 2015, 49(24): 14392-14400.
[11] CHOI Yejin, YOON Ho-Il, LEE Changha, et al. Activation of periodate by freezing for the degradation of aqueous organic pollutants[J]. Environmental Science & Technology, 2018, 52(9): 5378-5385.
[12] ZHANG Xi, KAMALI Mohammadreza, ULENERS Timon, et al. UV/TiO2/periodate system for the degradation of organic pollutants-kinetics, mechanisms and toxicity study[J]. Chemical Engineering Journal, 2022. DOI:10.1016/j.cej.2022.137680.
[13] ZHANG Xi, YU Xiaobin, YU Xinyue, et al. Efficiency and mechanism of 2,4-dichlorophenol degradation by the $\mathrm{UV/IO}_4^-$ process[J]. Science of the Total Environment, 2021. DOI:10.1016/j.scitotenv.2021.146781.
[14] DU Jiangkun, XIAO Guangfeng, XI Yanxing, et al. Periodate activation with manganese oxides for sulfanilamide degradation[J]. Water Research, 2020. DOI:10.1016/j.watres.2019.115278.
[15] LEE Hongshin, YOO Ha-Young, CHOI Jihyun, et al. Oxidizing capacity of periodate activated with iron-based bimetallic nanoparticles[J]. Environmental Science & Technology, 2014, 48(14): 8086-8093.
[16] ZHANG Ying, ZHOU Minghua. A critical review of the application of chelating agents to enable Fenton and Fenton-like reactions at high pH values[J]. Journal of Hazardous Materials, 2019, 362: 436-450.
doi: S0304-3894(18)30830-6 pmid: 30261437
[17] YE Yuxin, WEN Cheng, WANG Jiawei, et al. Valence-dependent catalytic activities of iron terpyridine complexes for pollutant degradation[J]. Chemical Communication, 2020, 56(41): 5476-5479.
[18] IGARASHI Mami, ZHU Qianqian, SASAKI Masahide, et al. Catalytic oxidation of 2,4,6-tribromophenol using iron(Ⅲ) complexes with imidazole, pyrazole, triazine and pyridine ligands[J]. Journal of Molecular Catalysis A: Chemical, 2016, 413: 100-106.
[19] DU Jiangkun, TANG Shigang, FAHEEM, et al. Insights into periodate oxidation of bisphenol A mediated by manga-nese[J]. Chemical Engineering Journal, 2019, 369: 1034-1039.
doi: 10.1016/j.cej.2019.03.158
[20] ZONG Yang, ZHANG Hua, SHAO Yufei, et al. Surface-mediated periodate activation by nano zero-valent iron for the enhanced abatement of organic contaminants[J]. Journal of Hazardous Materials, 2022. DOI:10.1016/j.jhazmat.2021.126991.
[21] WANG Lingli, LAN Xu, PENG Wenya, et al. Uncertainty and misinterpretation over identification, quantification and transformation of reactive species generated in catalytic oxidation processes: a review[J]. Journal of Hazardous Materials, 2021. DOI:10.1016/j.jhazmat.2020.124436.
[22] FAN Jinhong, QIN Hehe, JIANG Simin. Mn-doped g-C3N4 composite to activate peroxymonosulfate for acetaminophen degradation: the role of superoxide anion and singlet oxygen[J]. Chemical Engineering Journal, 2019, 359: 723-732.
doi: 10.1016/j.cej.2018.11.165
[23] DONG Yudan, ZHANG Liangqing, ZHOU Peng, et al. Natural cellulose supported carbon nanotubes and Fe3O4NPs as the efficient peroxydisulfate activator for the removal of bisphenol A: an enhanced non-radical oxidation process[J]. Journal of Hazardous Materials, 2022. DOI:10.1016/j.jhazmat.2021.127054.
[24] YU Yuqing, TAN Peng, HUANG Xinjue, et al. Homogeneous activation of peroxymonosulfate using a low-dosage cross-bridged cyclam manganese (II) complex for organic pollutant degradation via a nonradical pathway[J]. Journal of Hazardous Materials, 2020. DOI:10.1016/j.jhazmat.2020.122560.
[25] GUO Dongli, YAO Yuan, YOU Shijie, et al. Ultrafast degradation of micropollutants in water via electro-periodate activation catalyzed by nanoconfined Fe2O3[J]. Applied Catalysis B: Environmental, 2022. DOI:10.1016/japcatb2022.121289.
[1] 杨亮, 孔韩韩, 李韦霖, 祁小芬, 张天芸, 王雪梅, 李文全. 沸石咪唑酯骨架-8的制备及其对刚果红的吸附性能[J]. 纺织学报, 2024, 45(07): 140-149.
[2] 张诗雨, 姚依婷, 董晨珊, 张如全, 杨红军, 顾绍金, 黄菁菁, 杜杰毫. 金属有机框架/聚丙烯纤维基复合材料对化学战剂模拟物的快速降解[J]. 纺织学报, 2024, 45(06): 134-141.
[3] 冯颖, 于汉哲, 张宏, 李可心, 马标, 董鑫, 张建伟. 静电纺壳聚糖基纳米纤维的制备及其在水处理中应用研究进展[J]. 纺织学报, 2024, 45(05): 218-227.
[4] 郑康, 龚文丽, 鲍杰, 刘琳. 两性纤维素多孔凝胶球的制备及其动态吸附性能[J]. 纺织学报, 2024, 45(05): 102-112.
[5] 陆瑶瑶, 叶俊涛, 阮承祥, 娄瑾. 二氧化钛/多孔碳纳米纤维复合材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(04): 67-75.
[6] 朱维维, 舒伟, 顾文娟. 负载不同极性药物对粘胶织物结构和性能的影响[J]. 纺织学报, 2024, 45(04): 136-141.
[7] 张永芳, 郭红, 史晟, 阎智锋, 侯文生. 涤纶/棉混纺织物在水热体系中的降解[J]. 纺织学报, 2024, 45(04): 160-168.
[8] 李方, 张怡立, 王曼, 孟祥周, 沈忱思. 锑污染物对绿藻及蓝藻的急性毒性效应[J]. 纺织学报, 2024, 45(04): 169-179.
[9] 陈荣轩, 孙辉, 于斌. N-TiO2/聚丙烯复合熔喷非织造材料的制备及其光催化性能[J]. 纺织学报, 2024, 45(03): 137-147.
[10] 陈咏, 叶梦婷, 王朝生, 乌婧, 王华平. 聚丁二酸丁二醇酯性能调控策略及应用[J]. 纺织学报, 2024, 45(01): 220-229.
[11] 杨智超, 刘淑强, 吴改红, 贾潞, 张曼, 李甫, 李慧敏. 可吸收手术缝合线研究进展[J]. 纺织学报, 2024, 45(01): 230-239.
[12] 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16.
[13] 张永芳, 费鹏飞, 阎智锋, 王淑花, 郭红. 废弃纤维素纺织品水热降解技术的研究进展[J]. 纺织学报, 2023, 44(12): 216-224.
[14] 孙辉, 崔小港, 彭思伟, 丰江丽, 于斌. 聚乳酸/磁性金属有机框架材料复合熔喷布的制备及其空气过滤性能[J]. 纺织学报, 2023, 44(12): 26-34.
[15] 李红颖, 徐毅, 杨帆, 任瑞鹏, 周全, 吴丽杰, 吕永康. 三维乒乓菊状CdS/BiOBr催化剂的制备及其光催化降解罗丹明B[J]. 纺织学报, 2023, 44(09): 124-133.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!