纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 97-105.doi: 10.13475/j.fzxb.20230600301

• 纺织工程 • 上一篇    下一篇

羊毛混纺面料生产流程的碳图谱建模与应用

吴涛1, 李婕1, 鲍劲松1(), 王新厚1, 崔鹏2   

  1. 1.东华大学 机械工程学院, 上海 201620
    2.东华大学 计算机科学与技术学院, 上海 201620
  • 收稿日期:2023-05-30 修回日期:2023-11-17 出版日期:2024-09-15 发布日期:2024-09-15
  • 通讯作者: 鲍劲松(1972—),男,教授,博士。主要研究方向为工业智能、智能制造。E-mail: bao@dhu.edu.cn
  • 作者简介:吴涛(1996—),男,博士。主要研究方向为工业智能。
  • 基金资助:
    上海市科学技术委员会自然科学基金面上项目(21ZR1400800)

Modeling of carbon footprints for producing wool blended fabrics and model applications

WU Tao1, LI Jie1, BAO Jinsong1(), WANG Xinhou1, CUI Peng2   

  1. 1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    2. College of Computer Science and Technology, Donghua University, Shanghai 201620, China
  • Received:2023-05-30 Revised:2023-11-17 Published:2024-09-15 Online:2024-09-15

摘要:

纺织行业绿色转型从原材料生产、纺纱、织造、染整到最终产品循环供应网络的链路长、碳足迹流向和分布极为复杂,面向全生命周期的绿色化碳追溯和管理非常困难。以羊毛混纺面料生产为研究对象,采用流程挖掘和图谱等工业智能技术,提出一种面料生产的碳图谱建模、碳排放量化和应用方法。首先,建立羊毛混纺面料各级工序流程中能量流、物料流、人员流和碳流4个维度的生产流程工序级别碳排放量化模型;其次,在量化模型基础上提出了一种羊毛混纺面料生产流程知识的碳图谱建模方法,可实现以订单为线索的面料生产流程工序碳排放计算;最后,利用流程挖掘技术生成直接跟随图,可视分析面料生产过程的全局碳排放分布与流向,可实现全局和局部碳排放多角度监测。以上海某纺织企业生产流程为例,进一步验证本文所提出的羊毛混纺面料生产流程碳排放图谱的有效性,以期为企业的碳减排工作提供指导和决策参考。

关键词: 羊毛混纺面料生产, 碳图谱, 碳排放, 工业智能

Abstract:

Objective In the context of the 2030 carbon peak target, the green transformation of the textile industry is the only way to achieve the carbon neutrality. However, the flow and distribution of carbon footprints are extremely complex, making green carbon tracing and management for the whole life cycle very difficult. This study aims to address the complex issue of tracing and managing the lifecycle carbon footprint of wool blended fabrics in the green transformation of the textile industry. The specific goal is to develop a carbon emission knowledge graph (simplified ″carbon knowledge graph″) model for the production process of wool blended fabrics, quantify carbon emissions, and apply this model to provide guidance and decision-making support for the industry's carbon reduction efforts.

Method The study employs industrial intelligent technologies such as process mining and knowledge graph. Initially, a carbon emission quantification model is developed considering four dimensions: energy flow, material flow, personnel flow, and carbon flow throughout the various stages of wool blended fabric production, facilitating the modeling of local-level carbon emission management. Subsequently, a carbon emission knowledge graph modeling approach is introduced on the foundation of the quantification model, which allows for the calculation of carbon emissions in fabric production processes. In the end, directly-follows graphs are produced to model the global-level carbon emission distribution throughout the fabric production process, accomplishing bidirectional modeling of both global-level and local-level carbon emissions.

Results Using real data as an example, this paper constructs a carbon knowledge graph model for the production process of wool blended fabrics. The model comprises 8 045 nodes, 15 717 edges, 264 order nodes, and 779 process steps. The results show that the total carbon emissions for weaving in the current 264 orders amount to 385 010.707 kg CO2, and the total carbon emissions for dyeing amount to 2 385 362.262 kg CO2. Therefore, analyzing the energy consumption, material usage, and personnel carbon emissions of the dyeing process in the production of wool blended fabrics is crucial for understanding its carbon footprint. Furthermore, a specific order case involving the dyeing process of a fabric blend of 80% wool, 12% nylon, and 8% other fibers was selected for analysis. The experiment shows that the operation of production equipment is the main source of electrical energy carbon emissions in the actual production process, accounting for 93.92% of the total, or 1 634.263 kg CO2. Moreover, the carbon emissions from the air compressor and lighting equipment were found to be 31.720 kg CO2 and 24.494 kg CO2, respectively. The results indicate that optimizing the carbon emissions of operating production equipment is key to reducing overall carbon emissions in the production process. In brief, the method proposed in this study has shown high effectiveness and feasibility in managing carbon emissions throughout the product lifecycle, providing an important reference for the field of low-carbon industrial manufacturing.

Conclusion This study successfully proposes a method for carbon knowledge graph modeling, carbon emission quantification, and application for the production process of wool blended fabrics. The effectiveness of the model has been verified through real-world cases, and it provides guidance and decision-making support for its application in industry carbon emission reduction. The research approach is expected to be applied to other textile production processes, aiding in the green transformation of China's textile industry.

Key words: wool blended fabric production, carbon emission knowledge graph, carbon knowledge graph, industrial intelligence

中图分类号: 

  • TS106.5

图1

羊毛混纺产品全生命周期"

图2

GCE_DFG和LCE_KG碳图谱互补建模"

图3

羊毛混纺面料生产流程本体构成与结构关系"

图4

羊毛混纺面料生产流程本体模型"

表1

面料生产流程染色工序所涉及各类电能碳排放"

染色生产
设备
耗电量/(kW·h) 碳排放量/(kg CO2)
设备运转 1 895.130 1 535.055
空压机 39.160 31.720
辅助设备 24.350 19.723
照明设备 30.240 24.494
空调设备 28.730 23.271
耗电总计 2 017.610 1 634.263
[1] 唐政坤, 刘艳缤, 徐晨烨, 等. 面向减污降碳目标的纺织工业环境治理发展趋势[J]. 纺织学报, 2022, 43(1):131-140.
TANG Zhengkun, LIU Yanbin, XU Chenye, et al. Development trend of environmental management in textile industry for the goal of pollution reduction and carbon reduction[J]. Journal of Textile Research, 2022, 43(1):131-140.
[2] ZHAO H, LIN B. Assessing the energy productivity of China's textile industry under carbon emission constraints[J]. Journal of Cleaner Production, 2019, 228(10):197-207.
[3] 胡柯. 纺织企业生产过程关键环节碳排放研究[D]. 西安: 西安工程大学, 2018:21-22.
HU Ke. Research on carbon emission of key aspects of production process in textile enterprises[D]. Xi'an: Xi'an Engineering University, 2018:21-22.
[4] SUBRAMANIAN K, CHOPRA S S, CAKIN E, et al. Environmental life cycle assessment of textile bio-recycling-valorizing cotton-polyester textile waste to pet fiber and glucose syrup[J]. Resources, Conservation and Recycling, 2020. DOI: 10.1016/j.resconrec.2020.104989.
[5] 张佳艺, 周立亚, 吴雄英, 等. 区块链技术在纺织服装产品碳足迹追溯与核算中的应用[J]. 丝绸, 2023, 60(2):14-23.
ZHANG Jiayi, ZHOU Liya, WU Xiongying, et al. Application of blockchain technology in carbon footprint tracing and accounting of textile and apparel products[J]. Journal of Silk, 2023, 60(2):14-23.
[6] 邵景峰, 石小敏. 基于非支配排序遗传算法的细纱工艺参数优化[J]. 纺织学报, 2022, 43(1):80-88.
SHAO Jingfeng, SHI Xiaomin. Optimization of spinning process parameters based on non-dominated ranking genetic algorithm[J]. Journal of Textile Research, 2022, 43(1):80-88.
[7] 胡志强, 李心雨, 鲍劲松, 等. 基于多源异构数据的风机多模态装配工艺知识图谱建模[J]. 上海交通大学学报, 2023.DOI: 10.16183/j.cnki.jsjtu.2023.062.
HU Zhiqiang, LI Xinyu, BAO Jinsong, et al. Wind turbine multimodal assembly process knowledge graph modeling based on multi-source heterogeneous data[J]. Journal of Shanghai Jiaotong University, 2023.DOI: 10.16183/j.cnki.jsjtu.2023.062.
[8] 刘亚辉, 彭涛, 鲍劲松, 等. 面向柔性作业车间动态调度的双系统强化学习方法[J]. 上海交通大学学报, 2022, 56(9):1262-1275.
doi: 10.16183/j.cnki.jsjtu.2021.215
LIU Yahui, PENG Tao, BAO Jinsong, et al. A dual-system reinforcement learning approach for dynamic scheduling of flexible job shops[J]. Journal of Shanghai Jiaotong University, 2022, 56(9):1262-1275.
doi: 10.16183/j.cnki.jsjtu.2021.215
[9] 周彬, 李心雨, 鲍劲松, 等. 面向设备点检故障根因分析的因果知识建模方法[J]. 计算机集成制造系统, 2023, 29(8):2708-2721.
ZHOU Bin, LI Xinyu, BAO Jinsong, et al. A causal knowledge modeling approach for root cause analysis of equipment point inspection failures[J]. Computer Integrated Manufacturing Systems, 2023, 29(8):2708-2721.
[10] DUPUIS A, DADOUCHI C, AGARD B. Predicting crop rotations using process mining techniques and Markov principals[J]. Computers and Electronics in Agriculture, 2022. DOI: 10.1016/j.compag.2022.106686.
[11] CHAPELA-CAMPA D, DUMAS M, MUCIENTES M, et al. Efficient edge filtering of directly-follows graphs for process mining[J]. Information Sciences, 2022, 610: 830-846.
[12] LEEMANS S J J, FAHLAND D. Information-preserving abstractions of event data in process mining[J]. Knowledge and Information Systems, 2020, 62(3): 1143-1197.
[13] 葛威威, 曹华军, 李洪丞, 等. 基于混合Petri网的蓝宝石衬底生产线碳流动态建模与应用[J/OL]. 计算机集成制造系统, 2023, 29(7):2338-2350.
GE Weiwei, CAO Huajun, LI Hongcheng, et al. Dynamic modeling and application of carbon flow in sapphire substrate production line based on hybrid Petri nets[J/OL]. Computer Integrated Manufacturing Systems, 2023, 29(7):2338-2350.
[14] SHEN X, LI X, ZHOU B, et al. Dynamic knowledge modeling and fusion method for custom apparel production process based on knowledge graph[J]. Advanced Engineering Informatics, 2023. DOI: 10.1016/j.aei.2023.101880.
[1] 张建磊, 申攀登, 何琳, 程隆棣. 异质性环境规制对中国纺织服装业碳排放的影响[J]. 纺织学报, 2023, 44(10): 149-156.
[2] 刘宇, 谢汝义, 宋亚伟, 齐元章, 王辉, 房宽峻. 涤/棉交织物一浴法轧染工艺[J]. 纺织学报, 2022, 43(05): 18-25.
[3] 纪柏林, 王碧佳, 毛志平. 纺织染整领域支撑低碳排放的关键技术[J]. 纺织学报, 2022, 43(01): 113-121.
[4] 丁倩, 邓炳耀, 李昊轩. 全纤维光驱动界面蒸发系统在海水淡化工程中的应用研究进展[J]. 纺织学报, 2022, 43(01): 36-42.
[5] 邵景峰, 石小敏. 基于非支配排序遗传算法的细纱工艺参数优化[J]. 纺织学报, 2022, 43(01): 80-88.
[6] 邵景峰, 李宁, 蔡再生. 基于模糊多准则的涤纶低弹丝生产工艺参数优化[J]. 纺织学报, 2021, 42(01): 46-52.
[7] 张旭靖, 王立川, 陈雁. 服装缝制生产物料的低碳配送路径优化[J]. 纺织学报, 2020, 41(03): 143-147.
[8] 邵景峰, 马创涛, 王蕊超, 袁玉楼, 王希尧, 牛一凡. 基于碳排放核算的涤纶低弹丝生产工艺优化[J]. 纺织学报, 2019, 40(02): 166-172.
[9] 俞璐 王立川 陈雁. 服装生产过程碳排放量核算[J]. 纺织学报, 2016, 37(4): 160-164.
[10] 俞璐 王立川 陈雁. 服装生产过程碳排放计算模型[J]. 纺织学报, 2016, 37(3): 156-159.
[11] 杨自平, 张建春, 张华, 张晓霞, 高志强. 基于PAS2050规范的大麻纤维产品碳足迹测量分析[J]. 纺织学报, 2012, 33(8): 140-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!