纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 26-32.doi: 10.13475/j.fzxb.20230600801

• 纤维材料 • 上一篇    下一篇

聚乙烯亚胺/聚丙烯腈复合纤维薄膜的制备及其功能化应用

王浩然1, 于影2(), 左雨欣3, 顾志清2, 卢海龙1, 陈洪立1, 柯俊1   

  1. 1.浙江理工大学 机械工程学院, 浙江 杭州 310018
    2.嘉兴学院 信息科学与工程学院, 浙江 嘉兴 314001
    3.嘉兴南湖学院, 浙江 嘉兴 314001
  • 收稿日期:2023-06-05 修回日期:2024-03-22 出版日期:2024-09-15 发布日期:2024-09-15
  • 通讯作者: 于影(1988—),女,副教授,博士。研究方向为功能化纤维材料制备与柔性电子器件。E-mail: yingyu@zjxu.edu.cn
  • 作者简介:王浩然(1999—),男,硕士生。主要研究方向为功能纤维。
  • 基金资助:
    国家自然科学基金项目(52305059);浙江省自然科学基金项目(LGG21E050021);嘉兴市应用性基础研究专项资助项目(2020AY10015);嘉兴市应用性基础研究专项资助项目(2020AD10015);嘉兴市应用性基础研究专项资助项目(2021AY30020)

Preparation and functional application of polyethyleneimine/polyacrylonitrile composite fiber membrane

WANG Haoran1, YU Ying2(), ZUO Yuxin3, GU Zhiqing2, LU Hailong1, CHEN Hongli1, KE Jun1   

  1. 1. School of Mechanical Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. College of Information Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
    3. Jiaxing Nanhu University, Jiaxing, Zhejiang 314001, China
  • Received:2023-06-05 Revised:2024-03-22 Published:2024-09-15 Online:2024-09-15

摘要:

针对金属-空气电池阴极易腐蚀的问题,将聚乙烯亚胺(PEI)和聚丙烯腈(PAN)共混,基于静电纺丝方法制备PEI/PAN复合纤维薄膜,抑制CO2对空气阴极的侵蚀。借助计算机模拟方法计算PEI/PAN复合纤维薄膜的最佳成分配比,采用扫描电子显微镜、傅里叶变换红外吸收光谱仪、同步热分析仪等对PEI/PAN复合纤维薄膜的物理特性、CO2吸附性能进行表征和分析。以铝-空气电池为例,通过电池测试系统分析了PEI/PAN复合纤维薄膜对电池电化学性能的影响情况。结果表明:基于静电纺丝技术可成功将PEI嵌入PAN纤维中,所制备的PEI/PAN复合纤维薄膜纤维直径均一且表面光滑;当PEI/PAN复合纤维薄膜中的PEI质量分数为50%时,在100 kPa条件下其CO2吸附量可达1.86 mmol/g;在金属-空气电池阴极添加PEI/PAN复合纤维薄膜,相较于传统铝-空气电池,其比容量提升19.5%,放电时间延长20.4%。

关键词: 复合纤维薄膜, CO2吸附, 聚乙烯亚胺, 聚丙烯腈, 空气阴极腐蚀, 金属-空气电池, 静电纺丝

Abstract:

Objective The CO2 corrosion of metal-air batteries is extremely serious, which greatly limits the service life of the metal-air batteries. Existing researches generally add CO2 absorbers or O2 selective membranes to the cathodes, which indeed inhibit the CO2 corrosion to a certain extent, but have a negative impact on the electrochemical performance of the batteries. Therefore, there is an urgent need to explore a new method to inhibit cathode corrosion in metal-air batteries, which would not sacrifice the electrochemical performance of the battery and can effectively inhibit CO2 corrosion.

Method Polyethyleneimine/polyacrylonitrile (PEI/PAN) precursor solutions with different PEI contents were prepared, and PEI/PAN composite fiber membranes were fabricated by electrospinning. The microstructure of the composite fiber membrane was characterized by scanning electron microscope and infrared spectrometer. The influences of different PEI contents on the CO2 adsorption performance of PEI/PAN composite fiber membranes were studied combining computer simulation and CO2 adsorption-desorption experiments. An aluminum-air battery with a PEI/PAN composite fiber membrane was prepared to verify the optimization effect of the composite fiber membrane on the discharge performance of the battery.

Results PEI was successfully embedded into PAN fibers through electrospinning, and the surface was smooth and the layered fiber structure was evenly distributed. The computer simulation results showed that the PEI/PAN composite fiber membrane of system II (50% PEI) illustrated excellent adsorption performance, and the CO2 adsorption-desorption experiment further confirmed the simulation results. When the pressure was 100 kPa, the adsorption capacity of PEI/PAN composite fiber membrane was 1.86 mmol/g. The experimental and simulation results agreed well to each other. Taking aluminum-air batteries as an example, aluminum-air batteries with PEI/PAN composite fiber membranes were assembled. Electrochemical test results showed that compared with conventional aluminum-air batteries, the cathode corrosion of aluminum-air batteries with PEI/PAN composite fiber membrane was significantly inhibited. The discharge time of the aluminum battery with PEI/PAN composite fiber membrane was 548 min, while the conventional aluminum-air battery was only 455 min. The discharge time of the battery with the composite fiber film was prolonged by 20.4%, and the specific capacity was increased by 19.5%, proving that the PEI/PAN composite fiber film could effectively inhibit the corrosion of the positive electrode and improve the electrochemical performance of the battery.

Conclusion The PEI/PAN composite fiber membrane prepared has excellent adsorption properties, and its application in metal-air batteries can effectively inhibit the corrosion of CO2 on the air cathode. Adding PEI/PAN composite fiber membrane to the cathode of aluminum-air battery can significantly increase the specific capacity and prolong the discharge time of the battery.

Key words: composite fiber membrane, CO2 adsorption, polyethyleneimine, polyacrylonitrile, air cathode corrosion, metal-air battery, electrostatic spinning

中图分类号: 

  • TQ152

图1

分子动力学模拟模型"

表1

不同PEI/PAN成分配比的模拟参数"

体系 PEI PAN
分子数 质量分数/% 分子数 质量分数/%
575 33 970 67
885 50 740 50
1 050 60 565 40

图2

静电纺丝制备过程原理图及PEI/PAN复合纤维薄膜"

图3

铝空气电池组装及放电实验平台示意图"

图4

PEI/PAN复合纤维薄膜扫描电镜照片及红外光谱图"

图5

PEI/PAN复合纤维薄膜CO2吸附情况的模拟结果"

表2

不同压强条件PEI/PAN复合纤维薄膜的CO2吸附量模拟结果"

压强/
kPa
吸附量/(mmol·g-1)
体系Ⅰ 体系Ⅱ 体系Ⅲ
40 1.34 1.65 1.01
65 1.55 1.95 1.05
100 1.82 2.05 1.26

表3

不同压强条件下PEI/PAN复合纤维薄膜的CO2吸附量实验测试结果"

压强/
kPa
吸附量/(mmol·g-1)
体系Ⅰ 体系Ⅱ 体系Ⅲ
40 1.18 1.66 0.88
65 1.29 1.73 1.00
100 1.54 1.86 1.12

表4

Avrami力学模型计算参数"

体系 压强/
kPa
qm/
(mmol·g-1)
ka/
min-1
n
40 1.34 0.016 1.121
65 1.55 0.016 1.121
100 1.82 0.016 1.121
40 1.65 0.018 1.131
65 1.95 0.018 1.131
100 2.05 0.018 1.131
40 1.01 0.034 1.117
65 1.05 0.034 1.117
100 1.26 0.034 1.117

图6

复合纤维薄膜在不同压强下的CO2吸附量"

图7

CO2吸附循环曲线"

图8

铝-空气电池放电性能"

[1] 于小燕, 李萌, 魏磊, 等. 聚丙烯腈在锂金属电池电解质中的应用[J]. 化学进展, 2023, 35(3): 390-406.
doi: 10.7536/PC220913
YU Xiaoyan, LI Meng, WEI Lei, et al. Application of polyacrylonitrile in electrolytes of lithium metal battery[J]. Progress in Chemistry, 2023, 35(3): 390-406.
doi: 10.7536/PC220913
[2] BUCKINGHAM R, ASSET T, ATANASSOV P. Aluminum-air batteries: a review of alloys, electrolytes and design[J]. Journal of Power Sources, 2021. DOI: 10.1016/j.jpowsour.2021.229762.
[3] 唐丽琴, 李彦, 毛吉富, 等. 检测汗液用可穿戴电化学传感器的研究进展[J]. 纺织学报, 2023, 44(3): 221-230.
TANG Liqin, LI Yan, MAO Jifu, et al. Research progress in wearable electrochemical sensors for sweat detecting[J]. Journal of Textile Research, 2023, 44(3): 221-230.
[4] MACDONALD D D, ENGLISH C. Development of anodes for aluminium/air batteries-solution phase inhibition of corrosion[J]. Journal of Applied Electrochemistry, 1990, 20: 405-417.
[5] ZHAO D, ZHANG Z, REN J, et al. Fe2VO4 nanoparticles on rGO as anode material for high-rate and durable lithium and sodium ion batteries[J]. Chemical Engineering Journal, 2023. DOI: 10.1016/j.cej.2022.138882.
[6] ZHANG Q, WANG C, XIE Z, et al. Defective/doped graphene‐based materials as cathodes for metal-air batteries[J]. Energy & Environmental Materials, 2022, 5(4): 1103-1116.
[7] LIU X, ZHANG G, WANG L, et al. Structural design strategy and active site regulation of high‐efficient bifunctional oxygen reaction electrocatalysts for Zn-air battery[J]. Small, 2021. DOI: 10.1002/smll.202006766.
[8] ZHENG R, SHU C, LI J, et al. Oxygen vacancy engineering of vertically aligned NiO nanosheets for effective CO2 reduction and capture in Li-CO2 battery[J]. Electrochimica Acta, 2021. DOI: 10.1016/j.electacta.2021.138359.
[9] ZHANG P F, SHENG T, ZHOU Y, et al. Li-CO2/O2 battery operating at ultra-low overpotential and low O2 content on Pt/CNT catalyst[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2022.137541.
[10] NAJAM T, SHAH S S A, IBRAHEEM S, et al. Single-atom catalysis for zinc-air/O2 batteries, water electrolyzers and fuel cells applications[J]. Energy Storage Materials, 2022, 45: 504-540.
[11] 王焕君, 靳归, 李野, 等. 基于不同粒径ZIF-8多孔液体的二氧化碳捕集性能[J]. 精细化工, 2023, 40(3): 572-583.
WANG Huanjun, JIN Gui, LI Ye, et al. Carbon dioxide capture performance of porous liquids based on ZIF-8 with different particle sizes[J]. Fine Chemicals, 2023, 40(3): 572-583.
[12] IGLINA T, IGLIN P, PASHCHENKO D. Industrial CO2 capture by algae: a review and recent advances[J]. Sustainability, 2022. DOI: 10.3390/su14073801.
[13] ZHAO J, YING Y, WANG G, et al. Covalent organic framework film protected zinc anode for highly stable rechargeable aqueous zinc-ion batteries[J]. Energy Storage Materials, 2022, 48: 82-89.
[14] 沈雪华, 颜枫, 谢丰, 等. 固废源固态胺吸附剂用于CO2捕集研究进展[J]. 硅酸盐学报, 2023, 51(9): 2411-2422.
SHEN Xuehua, YAN Feng, XIE Feng, et al. Research progress of solid amine adsorbents from solid waste for CO2 capture[J]. Journal of the Chinese Ceramic Society, 2023, 51(9): 2411-2422.
[15] 陈明星, 张威, 王新亚, 等. 纳米纤维基催化材料的制备及其在环境领域中的应用研究进展[J]. 纺织学报, 2023, 44(1): 209-218.
CHEN Mingxing, ZHANG Wei, WANG Xinya, et al. Research progress of preparation of nanofiber-supported catalysts and application thereof in environmental protection[J]. Journal of Textile Research, 2023, 44(1): 209-218.
[16] 王纯怡, 吴伟, 王健, 等. C.I分散棕19在超临界CO2及水中溶解性的分子动力学模拟[J]. 纺织学报, 2020, 41(9): 95-101.
WANG Chunyi, WU Wei, WANG Jian, et al. Molecular dynamics simulation of solubility of C.I. Dispersed Brown 19 in supercritical CO2 and water[J]. Journal of Textile Research, 2020, 41(9): 95-101.
[17] 王嘉乐, 王越锋, 左雨欣, 等. 静电纺丝制备铝-空气电池阳极防腐薄膜[J]. 表面技术, 2021, 50(12): 364-71.
WANG Jiale, WANG Yuefeng, ZUO Yuxin, et al. Preparation of anti-corrosive film for Al-air battery anode by electrospinning[J]. Surface Technology, 2021, 50(12): 364-371.
[18] DANWITTAYAKUL S, MUENSRI P. Polyethyleneimine coated polyacrylonitrile cellulose membrane for colorimetric copper (II) determina-tion[J]. Journal of Water Chemistry and Technology, 2020, 42: 22-29.
[19] LIU M, ZHANG X, HAN R, et al. Crosslinked polyethylenimine/polyacrylonitrile blend membrane for multifunctional adsorption of heavy metals and endocrine disrupting chemicals in solution[J]. Journal of Molecular Liquids, 2022. DOI: 10.1016/j.molliq.2022.120124.
[20] ZENG K, LU T, JIANG P, et al. Methane adsorption capacity measurement in shale matrix nanopores at high pressure by low-field NMR and molecular simula-tion[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2021.133151.
[21] LIU X, WANG S, SHI W, et al. Thermo-/pH-dual-sensitive PEG/PAMAM nanogel: reaction dynamics and plugging application of CO2 channeling[J]. Gels, 2022. DOI: 10.3390/gels8100683.
[22] 张靖超, 郭百合, 张佳栋, 等. SO2对掺杂KMnO4的K2CO3/Al2O3吸附剂脱碳性能影响[J]. 环境科学与技术, 2023, 46(3): 230-236.
ZHANG Jingchao, GUO Baihe, ZHANG Jiadong, et al. Effect of SO2 on decarbonization performance of K2CO3/Al2O3 adsorbent doped with KMnO4[J] Environmental Science and Technology, 2023, 46(3): 230-236.
[1] 王清鹏, 张海艳, 王雨婷, 张涛, 赵燕. 聚环氧乙烷/Al2O3被动辐射降温膜的制备及其性能[J]. 纺织学报, 2024, 45(09): 33-41.
[2] 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17.
[3] 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115.
[4] 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126.
[5] 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141.
[6] 钱洋, 张璐, 李晨阳, 王荣武. 静电纺海藻酸钠复合纳米纤维膜制备及其性能[J]. 纺织学报, 2024, 45(08): 18-25.
[7] 刘嘉炜, 季东晓, 覃小红. 空气过滤用静电纺纳米纤维材料研究进展[J]. 纺织学报, 2024, 45(08): 35-43.
[8] 刘德龙, 王红霞, 林童. 气流辅助的静电纺丝技术研究进展[J]. 纺织学报, 2024, 45(08): 44-53.
[9] 于雯, 邓南平, 唐湘泉, 康卫民, 程博闻. 静电溶吹微纳无机纤维制备技术及其应用进展[J]. 纺织学报, 2024, 45(07): 230-239.
[10] 于承浩, 王元非, 于腾波, 吴桐. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45(07): 18-23.
[11] 刘思彤, 金丹, 孙东明, 李懿轩, 王艳慧, 王静, 王原. 静电纺纳米纤维结构的研究进展[J]. 纺织学报, 2024, 45(06): 201-209.
[12] 徐振凯, 马鸣, 蔺多佳, 刘航, 张剑峰, 夏鑫. 自支撑聚吡咙基碳纤维负极材料的制备及其电化学性能[J]. 纺织学报, 2024, 45(06): 23-31.
[13] 时吉磊, 陈廷彬, 付少海, 张丽平. 低红外发射率控温热红外伪装材料的制备与性能[J]. 纺织学报, 2024, 45(06): 32-38.
[14] 栗志坤, 于影, 左雨欣, 史豪秦, 金玉珍, 陈洪立. 聚丙烯腈/二硫化钼复合薄膜的挠曲电效应分析及其应用[J]. 纺织学报, 2024, 45(05): 27-34.
[15] 王新庆, 季东圣, 李舒畅, 杨晨, 张宗宇, 刘实诚, 王航, 田明伟. 包载型聚丙烯腈/SiO2气凝胶复合纳米纤维制备及其隔热性能[J]. 纺织学报, 2024, 45(05): 35-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!