纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 10-17.doi: 10.13475/j.fzxb.20230602601
汪宇佳1,2,3,4, 王怡2,3,4, 王雅思2,3, 代方银1,2,3,4, 李智2,3,4()
WANG Yujia1,2,3,4, WANG Yi2,3,4, WANG Yasi2,3, DAI Fangyin1,2,3,4, LI Zhi2,3,4()
摘要:
为获得基于天然平板丝结构的柔性压力传感器,以家蚕平板丝为柔性基底,在家蚕吐丝过程中循环喷洒过渡金属碳化物/氮化物和银纳米线作为导电材料,制备出具有天然多层结构的导电传感层复合材料。借助扫描电子显微镜和傅里叶红外光谱仪对制备的平板丝传感层进行形貌观察和结构分析,并通过优化传感层的层数开发出性能更优异的传感器。结果表明:具有2层传感层的传感器的灵敏度最高,在42.03~60.00 kPa的高压范围内灵敏度可达0.20 kPa-1,比仅有1层传感层的传感器灵敏度提高了20倍;该传感器响应/恢复时间均在1 s以内,且在施加不同压缩速率时仍能保持电流值稳定,可准确响应动态变化的压力,在超过1 500次压力加载/卸载循环后传感性能依旧保持稳定;该传感器可很好地贴附到人体关节表面用于监测人体运动状态,通过按压时间长短来模拟摩斯密码,可用于信息加密传输和困境救援;将传感器制成传感阵列,可应用于压力位置轨迹追踪。
中图分类号:
[1] |
YANG T, DENG W, CHU X, et al. Hierarchically microstructure-bioinspired flexible piezoresistive bioelectronics[J]. ACS Nano, 2021, 15 (7): 11555-11563.
doi: 10.1021/acsnano.1c01606 pmid: 34128640 |
[2] | WANG G, ZHANG Q, WANG Q, et al. Bio-based hydrogel transducer for measuring human motion with stable adhesion and ultrahigh toughness[J]. ACS Applied Materials & Interfaces, 2021, 13 (20): 24173-24182. |
[3] | WEI C, LIN W, LIANG S, et al. An all-in-one multifunctional touch sensor with carbon-based gradient resistance elements[J]. Nano-Micro Letters, 2022. DOI: 10.1007/s40820-022-00875-9. |
[4] | LI J X, LIU Y X, YUAN L, et al. A tissue-like neurotransmitter sensor for the brain and gut[J]. Nature, 2022, 606: 94-101. |
[5] | 李凤超, 孔振, 吴锦华, 等. 柔性压阻式压力传感器的研究进展[J]. 物理学报, 2021. DOI: 10.7498/aps.70.20210023. |
LI Fengchao, KONG Zhen, WU Jinhua, et al. Advances in flexible piezoresistive pressure sensor[J]. Acta Physica Sinica, 2021. DOI: 10.7498/aps.70.20210023. | |
[6] | DUAN Z H, JIANG Y D, HUANG Q, et al. Facilely constructed two-sided microstructure interfaces between electrodes and cellulose paper active layer: eco-friendly, low-cost and high-performance piezoresistive sensor[J]. Cellulose, 2021, 28 (10): 6389-6402. |
[7] | LI X P, LI Y, LI X F, et al. Highly sensitive, reliable and flexible piezoresistive pressure sensors featuring polyurethane sponge coated with mxene sheets[J]. Journal of Colloid and Interface Science, 2019, 542: 54-62. |
[8] | HWANG J, KIM Y, YANG H, et al. Fabrication of hierarchically porous structured PDMS composites and their application as a flexible capacitive pressure sensor[J]. Composites Part B:Engineering, 2021. DOI: 10.1016/j.compositesb.2021.108607. |
[9] | XU M T, CAI H H, LIU Z L, et al. Skin-friendly corrugated multilayer microspherical sensor fabricated with silk fibroin, poly (lactic-co-glycolic acid), polyaniline, and kappa-carrageenan for wide range pressure detection[J]. International Journal of Biological Macromolecules, 2022, 194: 755-762. |
[10] |
WANG Z W, CONG Y, FU J. Stretchable and tough conductive hydrogels for flexible pressure and strain sensors[J]. Journal of Materials Chemistry B, 2020, 8 (16): 3437-3459.
doi: 10.1039/c9tb02570g pmid: 32100788 |
[11] | CAI H, WANG Y, XU M, et al. Low cost, green and effective preparation of multifunctional flexible silk fabric electrode with ultra-high capacitance retention[J]. Carbon, 2022, 188: 197-208. |
[12] | WU R, MA L, PATIL A, et al. All-textile electronic skin enabled by highly elastic spacer fabric and conductive fibers[J]. ACS Applied Materials & Interfaces, 2019, 11 (36): 33336-33346. |
[13] | 汤健, 闫涛, 潘志娟. 导电复合纤维基柔性应变传感器的研究进展[J]. 纺织学报, 2021, 42(5): 168-177. |
TANG Jian, YAN Tao, PAN Zhijuan. Research progress of flexible strain sensors based on conductive composite fibers[J]. Journal of Textile Research, 2021, 42(5): 168-177. | |
[14] | WU Z G, WEI L S, TANG S W, et al. Recent progress in Ti3C2Tx MXene-based flexible pressure sensors[J]. ACS Nano, 2021, 15 (12): 18880-18894. |
[15] | LIU L X, CHEN W, ZHANG H B, et al. Flexible and multifunctional silk textiles with biomimetic leaf-like MXene/silver nanowire nanostructures for electromagnetic interference shielding, humidity monitoring, and self-derived hydrophobicity[J]. Advanced Functional Materials, 2019. DOI: 10.1002/adfm.201905197. |
[16] | BI L, YANG Z, CHEN L, et al. Compressible AgNWs/Ti3C2Tx MXene aerogel-based highly sensitive piezoresistive pressure sensor as versatile electronic skins[J]. Journal of Materials Chemistry A, 2020, 8 (38): 20030-20036. |
[17] |
DIONIGI C, POSATI T, BENFENATI V, et al. A nanostructured conductive bio-composite of silk fibroin-single walled carbon nanotubes[J]. Journal of Materials Chemistry B, 2014, 2 (10): 1424-1431.
doi: 10.1039/c3tb21172j pmid: 32261458 |
[18] | LIU Z, SHANG S, CHIU K-l, et al. Fabrication of silk fibroin/poly(lactic-co-glycolic acid)/graphene oxide microfiber mat via electrospinning for protective fabric[J]. Materials Science and Engineering: C, 2020. DOI: 10.1016/j.msec.2019.110308. |
[19] | 方方, 朱小丹, 王梦颖. 一种新型柔性织物传感器的静态性能测试与评估[J]. 丝绸, 2019, 56(8):13-18. |
FANG Fang, ZHU Xiaodan, WANG Mengying. Static performance test and evaluation of a new flexible fabric sensor[J]. Journal of Silk, 2019, 56(8): 13-18. | |
[20] | LIU Y, TAO L Q, WANG D Y, et al. Flexible, highly sensitive pressure sensor with a wide range based on graphene-silk network structure[J]. Applied Physics Letters, 2017. DOI: 10.1063/1.4978374. |
[21] | XU M, CAI H, LIU Z, et al. Breathable, degradable piezoresistive skin sensor based on a sandwich structure for high-performance pressure detection[J]. Advanced Electronic Materials, 2021. DOI: 10.1002/aelm.202100368. |
[22] | ZHANG H M, ZHANG Y, ZHANG J W, et al. Preparation and characterization of flexible pressure sensor based on silver nanowires/nonwoven fabric[J]. Polymer Composites, 2021, 42 (5): 2523-2530. |
[1] | 吴帆, 梁凤玉, 肖奕葶, 杨智博, 王文婷, 樊威. 聚(3,4-乙撑二氧噻吩):聚苯乙烯磺酸基复合导电纤维的制备及其性能[J]. 纺织学报, 2024, 45(08): 99-106. |
[2] | 施楚, 李俊, 王云仪. 基于温度监测的糖尿病足预防性智能鞋袜研究进展[J]. 纺织学报, 2024, 45(07): 240-247. |
[3] | 王建, 张蕊, 郑莹莹, 董正梅, 邹专勇. 二维过渡金属碳/氮化合物基柔性纺织压力传感器的研究进展[J]. 纺织学报, 2024, 45(06): 219-226. |
[4] | 刘欢欢, 孟虎, 王朝晖. 适老化智能可穿戴设计研究进展及发展趋势[J]. 纺织学报, 2024, 45(03): 236-243. |
[5] | 闫鹏翔, 陈富星, 刘红, 田明伟. 柔性力感知电子织物的制备及其人体运动监测系统构建[J]. 纺织学报, 2024, 45(02): 59-66. |
[6] | 陈露, 石宝, 魏赛男, 贾立霞, 阎若思. 三维一体针织结构超级电容器的储能性能[J]. 纺织学报, 2024, 45(02): 126-133. |
[7] | 郑贤宏, 唐金好, 李长龙, 王炜. 中空磁性Fe3O4纳米球/MXene复合棉织物的制备及其电磁屏蔽性能[J]. 纺织学报, 2023, 44(11): 142-150. |
[8] | 贾丽萍, 黎明, 李威龙, 冉建华, 毕曙光, 李时伟. 基于长银纳米线的应变传感与电热双功能包芯纱的制备及其性能[J]. 纺织学报, 2023, 44(10): 113-119. |
[9] | 李龙, 张弦, 吴磊. 导电纱线制备方法与应用的研究进展[J]. 纺织学报, 2023, 44(07): 214-221. |
[10] | 刘欢欢, 王朝晖, 叶勤文, 陈子唯, 郑婧瑾. 可穿戴技术在情绪识别中的应用进展及发展趋势[J]. 纺织学报, 2022, 43(08): 197-205. |
[11] | 林美霞, 王嘉雯, 肖爽, 王晓云, 刘皓, 何崟. 高灵敏超压缩生物基炭化材料柔性压力传感器的制备及其性能[J]. 纺织学报, 2022, 43(02): 61-68. |
[12] | 虞茹芳, 洪兴华, 祝成炎, 金子敏, 万军民. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131. |
[13] | 方剑, 任松, 张传雄, 陈钱, 夏广波, 葛灿. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(09): 1-9. |
[14] | 陈足娇, 张睿, 卓雯雯, 张龙琳, 周莉. 可穿戴足底压力监测系统研究进展[J]. 纺织学报, 2021, 42(09): 31-38. |
[15] | 荣凯, 樊威, 王琪, 张聪, 于洋. 二维过渡金属碳/氮化合物复合纤维在智能可穿戴领域的应用进展[J]. 纺织学报, 2021, 42(09): 10-16. |
|