纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 120-126.doi: 10.13475/j.fzxb.20230604501

• 染整工程 • 上一篇    下一篇

生物质植酸改性聚氨酯涂层锦纶6织物的制备及其阻燃性能

程献伟1,2, 刘亚文1,2, 关晋平1,2(), 陈瑞3   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215021
    2.苏州大学 纺织行业纺织材料阻燃整理重点实验室,江苏 苏州 215021
    3.江苏恒力化纤股份集团有限公司, 江苏 苏州 215226
  • 收稿日期:2023-06-21 修回日期:2024-03-04 出版日期:2024-06-15 发布日期:2024-06-15
  • 通讯作者: 关晋平(1976—),女,教授,博士。主要研究方向为纺织品阻燃科学研究、纺织品可持续染整技术。E-mail:guanjinping@suda.edu.cn
  • 作者简介:程献伟(1992—),男,副教授,博士。主要研究方向为阻燃功能性纺织品加工理论与技术。
  • 基金资助:
    苏州市产业前瞻与关键核心技术项目(SYC2022017)

Preparation and flame-retardant performance of coated polyamide 6 fabrics with biomass phytic acid modified polyurethane

CHENG Xianwei1,2, LIU Yawen1,2, GUAN Jinping1,2(), CHEN Rui3   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. Key Laboratory of Flame Retardancy Finishing of Textile Materials (CNTAC), Soochow University, Suzhou, Jiangsu 215021, China
    3. Jiangsu Hengli Chemical Fiber Co., Ltd., Suzhou, Jiangsu 215226, China
  • Received:2023-06-21 Revised:2024-03-04 Published:2024-06-15 Online:2024-06-15

摘要:

针对聚氨酯涂层锦纶6织物阻燃性能差、熔滴严重的问题,通过采用生物质植酸对水性聚氨酯进行改性,开发环保高效的阻燃体系对锦纶6织物进行涂层改性。测试分析了涂层锦纶6织物的阻燃性能、耐水洗性能、耐静水压、热稳定性和阻燃机制等。研究结果表明:聚氨酯涂层锦纶6织物在垂直燃烧测试中完全燃烧,损毁长度为30 cm,熔滴引燃脱脂棉,植酸/植酸钠改性聚氨酯涂层锦纶6织物在垂直燃烧中能够自熄,无熔滴产生,损毁长度降低至12.4 cm,极限氧指数升高至29.0%;经过10次水洗后涂层锦纶6织物仍能自熄,具有较好的阻燃性能和耐水洗性能;涂层锦纶6织物的热分解提前,经热分解后磷元素保留在残炭中,参与成炭,植酸盐主要通过固相阻燃机制提高涂层锦纶6织物的阻燃性能。

关键词: 锦纶6织物, 聚氨酯, 植酸, 阻燃涂层, 阻燃织物, 功能纺织品

Abstract:

Objective Polyurethane (PU)-coated polyamide 6 (PA6) fabrics are widely used in various applications such as parachutes, luggage fabrics, tent covers, and other canopy materials. However, the PU-coated PA6 fabrics are highly flammable and cannot meet the fire-proof regulations. Besides, the generation of droplets during combustion can further increase the risk of fire. Therefore, it is essential to develop an environmentally friendly and efficient flame-retardant system to enhance the flame retardancy of PU-coated PA6 fabrics. Phytic acid (PA) is primarily sourced from plant seeds, roots, and stems, making it a valuable resource, the advantages of which include natural degradability, eco-friendliness, and high phosphorus content (28%). This study aims to investigate the effectiveness of biomass phytate salt in modifying water-based PU coatings to improve the flame retardancy and reduce the dripping behavior of coated PA6 fabrics.

Method Waterproof PA6 fabrics with grade 4 waterproof performance were developed to prevent permeation during the PU coating process. The phytate salt flame-retardant was prepared by combining PA and sodium phytate to a pH of 7.5 with a mass ratio of 5∶17. The phytate salt was then incorporated into the PU resin along with the capping polyisocyanate crosslinker 903. The resulting flame-retardant PU was applied to the PA6 fabrics using a laboratory small-scale scraper, and the coated PA6 fabrics were pre-dried at 110 ℃ for 3 min and baked at 150 ℃ for 3 min. The coating add-on to the fabrics was controlled to 50, 100, and 150 g/m2 to achieve specific performance characteristics.

Results The flame retardancy, washing resistance, static water pressure resistance, thermal stability, and flame-retardant mechanism of coated PA6 fabrics were analyzed. The results suggested that the phytate salt was highly compatible with PU and did not significantly affect its film-forming performance. PA6 fabrics coated with phytate salt-modified PU exhibited the self-extinguishing properties during the vertical burning test without producing melting drips. The damaged length decreased from 30.0 cm to 12.4 cm, and the limiting oxygen index was increased to 29.0% from 20.8% of the pristine PA6 fabric. As a result, the coated PA6 fabrics met the B1 classification according to standard GB/T 17591. Even after 10 washing cycles, the coated PA6 fabrics retained their self-extinguishing properties, demonstrating good flame retardancy and washing resistance. The introduction of phytate salt-based PU coating had a significant impact on the thermal degradation of the PA6 fabric. The initial degradation temperature of the coated PA6 fabric shifted to lower temperatures, indicating that the phytate salt decomposed at a lower temperature and promoted the dehydration of the PA6 fabric, thereby accelerating its thermal degradation. When the coated PA6 fabrics were calcinated at varying temperatures, significant dimensional changes at the beginning were observed, and bubbles on the surface of the residue were formed. These observations could be attributed to the thermal degradation of the phytate salt, which caused the dehydration of the coated PA6 fabric. Additionally, the phosphorus content of the char residues of coated PA6 fabric showed a slight increase below 400 ℃, followed by a significant increase at higher temperatures. This behavior was linked to the thermal degradation of the PU-coated PA6 fabric, which released gases such as acetaldehyde, methane, and carbon monoxide after reaching 400 ℃. These findings were consistent with the thermogravimetric analysis, confirming that phosphorus primarily operated in the condensed phase during the combustion process.

Conclusion Phytate salt demonstrated the high flame-retardant efficiency for PA6 fabrics coated with PU. Even after undergoing 10 washing cycles, the coated PA6 fabrics were able to pass the vertical burning test and achieve a B1 classification. Analyses conducted on thermal and char residue revealed that the phytate salt system primarily improved flame retardancy through a solid-phase flame-retardant mechanism in these PU-coated PA6 fabrics. Overall, the modification of phytate salt into water-based PU coatings presents a promising and environmentally friendly solution for enhancing the fire safety of outdoor PA6 fabrics coated with PU and holds significant potential for commercial applications.

Key words: polyamide 6 fabric, polyurethane, phytic acid, flame-retardant coating, fame-retardant fabric, functional textile

中图分类号: 

  • TS156

图1

不同植酸盐质量分数下涂层锦纶6织物的损毁长度"

表1

不同涂层质量增加量下涂层锦纶6织物的损毁长度、LOI值及耐静水压"

涂层质量增加
量/(g·m-2)
损毁长度/
cm
LOI值/
%
耐静水压/
kPa
0 30.0 ± 0.3 20.8 ± 0.3 1.7 ± 0.8
50 12.6 ± 0.4 26.4 ± 0.3 14.3 ± 0.4
100 12.4 ± 0.5 28.7 ± 0.2 24.7 ± 0.6
150 11.0 ± 0.4 29.0 ± 0.3 27.8 ± 0.7

表2

不同水洗次数后涂层锦纶6织物的损毁长度、LOI值和磷含量"

水洗次数 损毁长度/cm LOI值/% 磷含量/(mg·g-1)
0 12.4 ± 0.3 28.7 ± 0.2 5.65 ± 0.13
5 13.1 ± 0.3 25.3 ± 0.3 4.34 ± 0.15
10 13.5 ± 0.4 24.3 ± 0.2 3.71 ± 0.17
15 14.1 ± 0.4 23.5 ± 0.2 3.41 ± 0.17
20 14.8 ± 0.3 23.1 ± 0.3 3.26 ± 0.14
25 16.1 ± 0.4 22.8 ± 0.2 3.16 ± 0.16

图2

原锦纶6织物和涂层锦纶6织物的扫描电镜照片"

图3

原锦纶6织物和涂层锦纶6织物的红外光谱"

图4

原锦纶6织物和涂层锦纶6织物的热重曲线"

图5

不同温度马弗炉处理后涂层锦纶6织物的图片"

图6

不同温度马弗炉处理后涂层前后锦纶6织物的扫描电镜照片"

图7

涂层锦纶6织物经不同温度处理后残炭的磷含量"

[1] 杨前方. 一步法高速纺锦纶6分纤母丝的制备及结构性能研究[D]. 上海: 东华大学, 2019: 3-5.
YANG Qianfang. Preparation and structural properties of one-step high speed spinning nylon 6 separated mother yarns[D]. Shanghai: Donghua University, 2019: 3-5.
[2] KUNDU C K, LI Z, SONG L, et al. An overview of fire retardant treatments for synthetic textiles: from traditional approaches to recent applications[J]. European Polymer Journal, 2020. DOI:10.1016/j.eurpolymj.2020.109911.
[3] HORROCKS AR. Textile flammability research since 1980-Personal challenges and partial solutions[J]. Polymer Degradation and Stability, 2013, 98(12): 2813-2824.
[4] 骆晓蕾, 李紫嫣, 马亚男, 等. 纺织品生态阻燃技术研究进展[J]. 纺织学报, 2021, 42(5): 193-202.
LUO Xiaolei, LI Ziyan, MA Ya'nan, et al. Progress in ecological flame retardant technology for textiles[J]. Journal of Textile Research, 2021, 42(5): 193-202.
[5] 郝凤岭, 耿伟涛, 张健, 等. 壳聚糖基阻燃剂的研究进展[J]. 毛纺科技, 2019, 47(2): 80-85.
HAO Fengling, GENG Weitao, ZHANG Jian, et al. Research progress of chitosan-based flame retardants[J]. Wool Textile Journal, 2019, 47(2): 80-85.
[6] MALUCELLI G. Flame-retardant systems based on chitosan and its derivatives: state of the art and perspectives[J]. Molecules, 2020. DOI:10.3390/molecules25184046.
[7] MALUCELLI G, BOSCO F, ALONGI J, et al. Biomacromolecules as novel green flame retardant systems for textiles: an overview[J]. RSC Advances, 2014, 4(86): 46024-46039.
[8] BASAK S, RAJA A S M, SAXENA S, et al. Tannin based polyphenolic bio-macromolecules: creating a new era towards sustainable flame retardancy of polymers[J]. Polymer Degradation and Stability, 2021. DOI:10.1016/j.polymdegradstab.2021.109603.
[9] 肖梦苑, 周新科, 张佳悦, 等. 木质素生物质阻燃剂及其应用研究进展[J]. 纺织学报, 2020, 41(12): 182-188.
doi: 10.13475/j.fzxb.20200305507
XIAO Mengyuan, ZHOU Xinke, ZHANG Jiayue, et al. Research progress of bio-based lignin flame retardant and its applications[J]. Journal of Textile Research, 2020, 41(12): 182-188.
doi: 10.13475/j.fzxb.20200305507
[10] 赵文靖, 刘延松, 谭伟, 等. 生物质阻燃涂层在涤纶纺织品上的研究进展[J]. 精细化工, 2022, 39(1): 65-73.
ZHAO Wenjing, LIU Yansong, TAN Wei, et al. Research progress of biomass flame retardant coatings on polyester textiles[J]. Fine Chemicals, 2022, 39(1): 65-73.
[11] SYKAM K, FÖRSTH M, SAS G, et al. Phytic acid: a bio-based flame retardant for cotton and wool fabrics[J]. Industrial Crops and Products, 2021. DOI:10.1016/j.indcrop.2021.113349.
[12] COSTES L, LAOUTID F, BROHEZ S, et al. Bio-based flame retardants: when nature meets fire protection[J]. Materials Science and Engineering: R: Reports, 2017, 117: 1-25.
[13] BHUIYAN MAR, WANG L, SHAID A, et al. Polyurethane-aerogel incorporated coating on cotton fabric for chemical protection[J]. Progress in Organic Coatings, 2019, 131: 100-110.
[14] 李朝晖, 徐爱玲. 植酸铵阻燃剂的合成及性能[J]. 印染助剂, 2022, 39(8): 21-25.
LI Zhaohui, XU Ailing. Synthesis and properties of ammonium phytate flame retardant[J]. Textile Auxiliaries, 2022, 39(8): 21-25.
[1] 徐豫松, 周杰, 甘佳怡, 张涛, 张先明. 含磷氮水性聚氨酯的制备及其在涤纶织物阻燃整理中应用[J]. 纺织学报, 2024, 45(07): 112-120.
[2] 李旭, 刘祥吉, 靳鑫, 杨承昊, 董朝红. 耐久高效磷/氮协同阻燃剂的制备及其在棉织物上的应用[J]. 纺织学报, 2024, 45(07): 121-129.
[3] 权衡, 钱赛龙, 刘诗楠, 邹春梅, 倪丽杰. 非线性阳离子聚氨酯改性有机硅柔软剂的制备及其应用性能[J]. 纺织学报, 2024, 45(05): 121-128.
[4] 王晓萌, 李婷婷, 许炳铨, 林佳弘, 楼静文. 耐用多功能光热阻燃织物的制备及应用[J]. 纺织学报, 2024, 45(04): 120-125.
[5] 胡自强, 骆晓蕾, 魏璐琳, 刘琳. 植酸/壳聚糖对涤纶/棉混纺织物的协同阻燃整理[J]. 纺织学报, 2024, 45(04): 126-135.
[6] 李琛, 王冬, 仲鸿天, 董朋, 付少海. 超细纤维合成革含浸用水性聚氨酯的合成及其应用[J]. 纺织学报, 2024, 45(03): 129-136.
[7] 方进, 张广知, 徐珍珍. 点击化学在功能纺织品制备中的应用研究进展[J]. 纺织学报, 2024, 45(03): 227-235.
[8] 范硕, 杨鹏, 曾锦豪, 宋潇迪, 龚昱丹, 肖遥. 抗熔滴型多元有机硅阻燃剂整理锦纶6织物的制备及其性能[J]. 纺织学报, 2024, 45(01): 152-160.
[9] 张广知, 杨甫生, 方进, 杨顺. 聚乳酸非织造布植酸/壳聚糖/硼酸一浴法阻燃整理[J]. 纺织学报, 2023, 44(10): 120-126.
[10] 王予涛, 丛洪莲, 顾洪阳. 纬编成形护膝结构设计及其热湿舒适性[J]. 纺织学报, 2023, 44(10): 68-74.
[11] 胡亦雯, 唐虹, 唐天一, 魏书涛. 仿松球叶片结构面料的制备及其调湿性能[J]. 纺织学报, 2023, 44(08): 118-125.
[12] 辛华, 李阳帆, 罗浩. 复合改性氧化石墨烯接枝水性聚氨酯的制备及其性能[J]. 纺织学报, 2023, 44(08): 133-142.
[13] 张杏, 叶伟, 龙啸云, 曹海建, 孙启龙, 马岩, 王征. 超高分子量聚乙烯纤维织物/热塑性聚氨酯复合材料的界面黏结性能[J]. 纺织学报, 2023, 44(08): 143-150.
[14] 施静雅, 王慧佳, 易雨青, 李妮. 聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 26-33.
[15] 孙国强, 杨建军, 吴庆云, 吴明元, 张建安, 刘久逸. 内交联型自消光水性聚氨酯树脂的制备及其性能[J]. 纺织学报, 2023, 44(07): 151-158.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!