纺织学报 ›› 2024, Vol. 45 ›› Issue (06): 142-148.doi: 10.13475/j.fzxb.20230604901

• 服装工程 • 上一篇    下一篇

基于关键点检测的服装廓形识别

陶金之1,2,3, 夏明1,2,3(), 王伟4   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.上海市空间飞行器机构重点实验室, 上海 201108
    3.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
    4.江阴逐日信息科技有限公司, 江苏 无锡 214434
  • 收稿日期:2023-06-26 修回日期:2023-12-11 出版日期:2024-06-15 发布日期:2024-06-15
  • 通讯作者: 夏明(1981—),男,副教授,博士生。主要研究方向为服装数字化技术。E-mail: xiaming@dhu.edu.cn
  • 作者简介:陶金之(2000—),女,硕士生。主要研究方向为服装数字化技术。
  • 基金资助:
    上海市科技计划资助项目(23DZ2229032);国家自然科学基金资助项目(12172229)

Clothing silhouette recognition based on detection of key points

TAO Jinzhi1,2,3, XIA Ming1,2,3(), WANG Wei4   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Shanghai Key Laboratory of Spacecraft Mechanism, Shanghai 201108, China
    3. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
    4. Jiangyin Zhuri Information Technology Co., Ltd., Wuxi, Jiangsu 214434, China
  • Received:2023-06-26 Revised:2023-12-11 Published:2024-06-15 Online:2024-06-15

摘要:

为精准且快速地实现对服装廓形的判断,以秀场连衣裙为研究对象,提出了基于关键点检测的服装廓形分类算法。使用YOLO v8-Pose模型对秀场连衣裙进行关键点检测,提取服装的肩部、胸部、腰部、臀部和底摆两侧共10个关键点,并生成服装廓形图。通过加入Sobel边缘提取算法改进的DenseNet网络深度提取服装廓形特征,采用余弦相似度算法将其与标准的廓形库中提取的特征相比较,最终实现服装廓形的判别与分类。结果表明,该方法能够快速且准确地实现服装廓形的分类,廓形分类准确率达到了95.9%。

关键词: 服装, 廓形分类, YOLO v8-Pose, 关键点检测, DenseNet网络, 相似度算法, 连衣裙

Abstract:

Objective The clothing silhouette serves as an important feature for distinguishing and describing garments, and it holds significant relevance in various aspects such as consumer guidance in purchasing, personalized recommendations and customization services, design and production optimization, as well as market trend analysis and research. Previous research generally relied on manually defined key areas and designed complex algorithms to extract key point dimensions, resulting in low efficiency in discrimination. In order to achieve accurate and rapid clothing silhouette classification, this research focuses on runway dresses and proposes a clothing silhouette classification algorithm based on key point detection.

Method A convolutional neural network was used in this research to predict ten key points including shoulders, chest, waist, hips, and bottom hem. These key points allow for the extraction of the clothing's silhouette from complex backgrounds, resulting in a silhouette image composed of lines. To extract simple clothing silhouette features, the DenseNet network was enhanced by incorporating the Sobel edge detection algorithm. The extracted features were then compared with the features extracted from a relative standard silhouette database using the cosine similarity algorithm. This approach ultimately enables the discrimination and classification of clothing silhouettes.

Results The average error rates for each key point ranged from 0.046 to 0.205. The key points on the sides of the bottom hem had relatively larger average error rates of 0.205 and 0.204. This is mainly due to the deformation of the bottom hem caused by the model's walking movements, making it challenging to discern the key points of the dresses with trailing hemlines caused by stage lighting reflections. The shoulder key points had the lowest error rates, with values of 0.046 and 0.053. This is because the clothing texture stands out more compared to the surface of the human body, resulting in higher accuracy in key point localization. The waist key points had slightly higher error rates with values of 0.071 and 0.081. This is often due to the design of division lines at the waist in order to highlight body proportions, making the waist key points relatively easier to identify. In addition to quantitative analysis for evaluating the model, this study also performed key point detection on five representative images with different silhouettes. For the experiment, 100 images of A-shaped silhouettes, 100 images of X-shaped silhouettes, and 58 images of H-shaped silhouettes were selected. Compared to two commonly used convolutional neural networks, i.e., VGG16 and ResNet50, the DenseNet-based silhouette classification showed a some advantage in accuracy. However, the average accuracy rate reached only 94.7%, which is not a significant improvement compared to other methods proposed in previous studies. When a Sobel layer was added to the DenseNet network, the edge features were sharpened, leading to improved accuracy in silhouette classification for various body shapes, under which circumstances, the average accuracy rate reached 95.9%.

Conclusion In this paper, an intelligent classification method for clothing silhouette based on key point detection is proposed. Automatic extraction and classification of clothing silhouettes is achieved by key point detection and similarity algorithm. The experimental results show that the method leads to 95.9% classification accuracy in silhouette recognition, and the F1 score reaches 0.941. In order to improve the accuracy of convolutional neural network's extraction of edge features, the Sobel edge extraction algorithm is applied to the feature extraction process of DenseNet network. For comparison, whilst the convolutional neural network is able to learn the edge features in the image, the silhouette recognition method based on key point detection proposed in this paper is applicable to the silhouette recognition of various types of garments, which provides ideas and references for future silhouette classification research.

Key words: clothing, silhouette classification, YOLO v8-Pose, keypoint detection, DenseNet network, similarity algorithm, dress

中图分类号: 

  • TS941.17

图1

廓形分类总体框架"

图2

基于回归的关键点检测框架"

表1

关键点的选取"

部位 代表点 描述
肩部 左肩点(A) 决定服装的上半身廓形,对肩膀位置和线条有显著影响
右肩点(B)
胸部 左胸点(C) 影响服装在胸部的贴合度和整体视觉效果,应考虑胸部曲线和体型特征
右胸点(D)
腰部 左腰点(E) 代表服装的腰部位置,对服装的比例和廓形起重要作用
右腰点(F)
臀部 左臀点(G) 决定服装的裙摆和裤子的臀部廓形,需要适应不同臀部曲线和体型
右臀点(H)
底摆 左摆点(I) 代表服装的下摆位置,决定了服装的整体长度和下摆廓形
右摆点(J)

图3

关键点到廓形图的转化过程"

图4

改进DenseNet网络结构"

图5

特征图"

图6

各关键点误差"

图7

关键点检测结果可视化"

表2

不同算法分类结果对比"

网络 准确率/% 召回率/% 精确率/% F1分数
VGG16 89.8 83.3 87.7 0.846
ResNet50 93.8 88.1 92.3 0.901
DenseNet121 94.7 89.7 94.9 0.921
DenseNet121+Sobel 95.9 93.7 95.1 0.941
[1] 周媛媛. 基于服装廓形变迁的时尚体型研究[D]. 武汉: 武汉纺织大学, 2017:4-31.
ZHOU Yuanyuan. Research on fashion figure based on clothing silhouette transition[D]. Wuhan: Wuhan Textile University, 2017:4-31.
[2] 陶晨, 段亚峰, 印梅芬. 服装廓形的识别与量化[J]. 纺织学报, 2015, 36(5): 79-82.
TAO Chen, DUAN Yafeng, YIN Meifen. Recognition and quantification of clothing silhouette[J]. Journal of Textile Research, 2015, 36(5): 79-82.
[3] 段澍湉, 崔明海, 陈怡帆, 等. 基于服装轮廓位置关系的廓形分类研究[J]. 北京服装学院学报(自然科学版), 2022, 42(2): 46-52.
DUAN Shutian, CUI Minghai, CHEN Yifan, et al. Research on silhouette classification based on clothing contour positioning[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2022, 42(2): 46-52.
[4] 傅白璐, 李峻, 刘晓刚. 基于人体分割的智能女装廓形尺寸数据库构建[J]. 纺织学报, 2018, 39(1): 119-125.
FU Bailu, LI Jun, LIU Xiaogang. Construction of intelligent women's clothing silhouette size database based on human body segmentation[J]. Journal of Textile Research, 2018, 39(1): 119-125.
[5] 夏明, 宋婧, 姜朝阳, 等. 基于连衣裙结构特征匹配的款式识别技术[J]. 纺织学报, 2020, 41(7): 141-146.
XIA Ming, SONG Jing, JIANG Chaoyang, et al. Style recognition technology based on matching of dress structural features[J]. Journal of Textile Research, 2020, 41(7): 141-146.
[6] JIANG X, CHEN Z, CHI C, et al. Research on intelligent recognition of trouser silhouettes based on label optimization[J]. Journal of Engineered Fibers and Fabrics, 2023.DOI:10.1177/15589250231168950.
[7] LIU W, ANGUELOV D, ERHAN D, et al. SSD: single shot multibox detector[C]// Computer Vision. Cham: Springer International Publishing,2016:21-37.
[8] TERVEN J, CORDOVA E. A comprehensive review of YOLO: from YOLOv1 to YOLOv8 and beyond[C]// Machine Learning and Knowledge Extraction. Swiss: MDPI AG,2023:1680-1716.
[9] HUANG G, LIU Z, MAATEN L V D, et al. Densely connected convolutional networks[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE Computer Society,2017:2261-2269.
[10] HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition[C]// Proceedings of IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE Computer Society,2016: 770-778.
[1] 谢红, 张林蔚, 沈云萍. 基于人体臂部的连续动态服装压力预测模型及准确性表征方法[J]. 纺织学报, 2024, 45(07): 150-158.
[2] 陈乔丹, 牛蒙蒙, 卢业虎. 充气调温抗浸服的研制与保暖性评价[J]. 纺织学报, 2024, 45(07): 159-164.
[3] 陈育帆, 郑小虎, 徐修亮, 刘冰. 基于机器视觉的缝纫线迹缺陷检测方法[J]. 纺织学报, 2024, 45(07): 173-180.
[4] 王建萍, 沈津竹, 姚晓凤, 朱妍西, 张帆. 服装裁片自动抓取技术及其布局方法的研究进展[J]. 纺织学报, 2024, 45(06): 227-234.
[5] 王一品, 李小辉. 服装褶皱形态的参数化表征方法[J]. 纺织学报, 2024, 45(06): 149-154.
[6] 王建萍, 朱妍西, 沈津竹, 张帆, 姚晓凤, 于卓灵. 软体机器人在服装领域的应用进展[J]. 纺织学报, 2024, 45(05): 239-247.
[7] 程碧莲, 蒋高明, 李炳贤. 三维服装虚拟展示技术的研究进展[J]. 纺织学报, 2024, 45(05): 248-257.
[8] 丁小蝶, 唐虹, 高强, 张成蛟. 上躯干皮肤温度冷热变化与热量调节区划分[J]. 纺织学报, 2024, 45(05): 147-154.
[9] 顾梅花, 花玮, 董晓晓, 张晓丹. 基于上下文提取与注意力融合的遮挡服装图像分割[J]. 纺织学报, 2024, 45(05): 155-164.
[10] 庹武, 杜聪, 陈谦, 吴超, 魏新桥, 张欣汝, 刘思雨. 基于计算机视觉与Canny算法的服装纸样轮廓提取[J]. 纺织学报, 2024, 45(05): 174-182.
[11] 鞠宇, 王朝晖, 李博一, 叶勤文. 基于机器学习的服装生产线员工效率预测[J]. 纺织学报, 2024, 45(05): 183-192.
[12] 马梓鸿, 陈慧敏, 丁孟孟, 岳晓丽. 面料堆垛非接触式分层吸附工艺模型与系统构建[J]. 纺织学报, 2024, 45(05): 209-217.
[13] 吴金颖, 李炘, 丁笑君, 邱文池, 邹奉元. 基于空间向量模长的青年女性腰腹臀部形态分类与判别[J]. 纺织学报, 2024, 45(04): 180-187.
[14] 郑小虎, 刘正好, 刘冰, 张洁, 徐修亮, 刘希. 面向平缝工艺信息融合的知识图谱构建方法[J]. 纺织学报, 2024, 45(04): 195-203.
[15] 王宇娴, 魏孟媛, 薛文良, 马颜雪. 童装质量检验不合格项的关联规则研究[J]. 纺织学报, 2024, 45(04): 204-210.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!