纺织学报 ›› 2024, Vol. 45 ›› Issue (09): 33-41.doi: 10.13475/j.fzxb.20230605701

• 纤维材料 • 上一篇    下一篇

聚环氧乙烷/Al2O3被动辐射降温膜的制备及其性能

王清鹏, 张海艳, 王雨婷, 张涛, 赵燕()   

  1. 苏州大学 纺织与服装工程学院, 江苏 苏州 215123
  • 收稿日期:2023-06-29 修回日期:2024-03-22 出版日期:2024-09-15 发布日期:2024-09-15
  • 通讯作者: 赵燕(1978—),女,教授,博士。主要研究方向为纤维材料表界面设计与功能化。E-mail: yanzhao@suda.edu.cn
  • 作者简介:王清鹏(1996—),男,硕士生。主要研究方向为功能性静电纺纳米纤维。
  • 基金资助:
    纺织行业丝绸功能材料与技术重点实验室开放课题项目(SDHY2235)

Preparation and properties of polyethylene oxide/Al2O3 passive radiative cooling membrane

WANG Qingpeng, ZHANG Haiyan, WANG Yuting, ZHANG Tao, ZHAO Yan()   

  1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China
  • Received:2023-06-29 Revised:2024-03-22 Published:2024-09-15 Online:2024-09-15

摘要:

针对传统制冷技术存在能耗大、额外产生热量、排放温室气体等弊端,以聚环氧乙烷(PEO)为原料,基于静电纺丝技术制备PEO微纳米纤维膜,并采用共混法将纳米氧化铝(Al2O3)颗粒添加到PEO纺丝溶液中,通过静电纺丝制备出PEO/Al2O3微纳米纤维膜,用于日间被动辐射降温。分析了纤维膜的形貌、太阳光反射率、大气窗口波段红外光透过率、发射率以及日间辐射降温性能。结果表明:由于微纳米纤维结构和纳米Al2O3颗粒的有效散射,使纤维膜的平均太阳光反射率达到90.2%;PEO作为选择性辐射降温材料,结合Al2O3纳米颗粒的声子极化共振,使得PEO/Al2O3纤维膜在大气窗口波段的发射率为90.0%,当Al2O3的质量分数为4%时,在平均太阳光强度为712.3 W/m2、环境湿度为14.2%的条件下,相对于环境温度日间降温达6.1 ℃。

关键词: 被动辐射降温, 静电纺丝, 聚环氧乙烷, 纳米氧化铝, 微纳米纤维

Abstract:

Objective Rapid population growth and industrialization cause global warming. Improving the cooling efficiency of materials and slowing down global warming become a top priority. With the development of micro/nano technology, through the design and preparation of new materials, high solar reflectivity and high infrared emissivity in the atmospheric window band infrared emissivity can be achieved to improve the daytime radiative cooling effect.

Method Using polyethylene oxide (PEO) as the raw material, PEO fibrous membranes were prepared through electrospinning technology. PEO/Al2O3 fibrous membranes were fabricated by combining different contents of nano-Al2O3 into PEO micro-nanofibers through a blending method. The morphology, reflectance of sunlight, mid-infrared transmittance and emissivity in the atmospheric window, and daytime radiative cooling performance of fibrous membranes were studied and analyzed.

Results Through SEM analysis, it was confirmed that the nano-Al2O3 particles were combined into the fibers, and the diameters of the fibers obtained by electrospinning were mainly distributed in the range of 0.2-1.6 μm, while the solar spectrum was in the range of 0.25-2.5 μm, demonstrating that the fibrous membrane has a strong scattering effect on sunlight. The increase in the content of nano-Al2O3 particles in fibrous membrane was confirmed by EDS analysis. The crystallization properties of the fibrous membranes were analyzed, and the results confirmed the existence of nano-Al2O3 particles in the FPRC-4 membrane. The chemical structure analysis suggested that the FPRC-4 membrane had no obvious characteristic peak in the mid-infrared band of 8-13 μm, and that it can achieve selective emission in the wavelength range of 8-13 μm. The effects of Al2O3 content and membrane thickness on solar light reflectance and mid-infrared transmittance were studied. The results indicated that owing to the effective scattering of micro-nanofiber structure and nano-Al2O3, the average solar light reflectance of the membrane was 90.2%, and the average transmittance in the atmospheric window was 93.5%. When the Al2O3 mass fraction was 4%, the PEO/Al2O3 fibrous membrane has the best optical properties. The solar light reflectance would increase with the increase of thickness, while the change in the mid-infrared transmittance with the increase of thickness was not obvious. The influence of added Al2O3 nanoparticles on the emissivity of the fibrous membrane was studied. The results showed that the introduction of nano-Al2O3 particles increased the overall infrared emissivity of FPRC-4 membrane to 80.3%, compared to the relatively low infrared emissivity of the pure PEO membrane (56.5%), and the average emissivity of FPRC-4 membrane in the atmospheric window was as high as 90.0%. Radiative cooling experiments were conducted using a self-designed testing setup to investigate the cooling performance of the samples. With an Al2O3 mass fraction of 4%, a temperature decrease of 6.1 ℃ was achieved during daytime under an average solar irradiance of 712.3 W/m2 and an average ambient humidity of 14.2%. The actual cooling effectiveness of the membrane was tested. Infrared camera observed that the surface temperature of the FPRC-4 sample was significantly lower than that of the control sample, indicating good radiative cooling performance of the FPRC-4 sample.

Conclusion The radiative cooling performance is closely associated with multiple factors. The Al2O3 content and membrane thickness have an impact on the solar light reflectance, mid-infrared transmittance in the atmospheric window region, emissivity, and radiative cooling performance of the fibrous membrane. Analysis of solar light reflectance spectra and mid-infrared transmittance spectra demonstrated that with an Al2O3 mass fraction of 4% and a thickness of 0.2 mm, the fibrous membrane achieved a daytime temperature reduction of 6.1 ℃. Radiative cooling technology holds promise for assisting China in achieving peak carbon emissions and carbon neutrality. The use of such fibrous membranes for energy-efficient radiative thermal regulation provides new avenues and approaches for mitigating global warming and advancing the development of renewable energy-saving refrigeration technologies.

Key words: passive radiative cooling, electrospinning, polyethylene oxide, nano alumina, micro-nano fiber

中图分类号: 

  • TS102.6

图1

PEO/Al2O3微纳米纤维膜被动辐射降温工作机制示意图"

图2

日间辐射降温性能测试装置"

图3

各样品的SEM照片及直径分布直方图"

表1

不同纳米Al2O3质量分数纤维膜中各元素的质量分数"

样品编号 C O Al
FPRC 62.2 37.8 0
FPRC-2 61.8 36.4 1.8
FPRC-4 61.6 35.3 3.1
FPRC-6 60.9 35.1 4.0
FPRC-8 60.7 34.4 4.9

图4

Al2O3、FPRC和FPRC-4纤维膜的X射线衍射谱图"

图5

FPRC和FPRC-4纤维膜的红外光谱图"

图6

纳米Al2O3质量分数对纤维膜光学性能的影响"

图7

FPRC-4纤维膜厚度对纤维膜光学性能的影响"

图8

FPRC和FPRC-4纤维膜的红外光发射率"

图9

日间辐射降温实验中样品温度及环境湿度和光功率密度随时间变化曲线"

表2

与文献报道的其它静电纺纤维膜的辐射降温性能比较"

材料 纤维直径/μm 微纳米颗粒直径/nm 反射率/% 发射率/% 辐射降温/℃ 参考文献
聚偏氟乙烯/二氧化硅微米颗粒 2 000~42 000 97.0 96.0 6.0 [21]
聚偏氟乙烯/三氧化二铝纳米颗粒 0.5~2.5 260~470 97.0 95.0 4.0 [23]
聚偏氟乙烯/二氧化硅微米颗粒 0.3~2.4 1 000~20 000 92.3 86.0 5.8 [24]
聚环氧乙烷 0.5~1.2 96.3 78.0 5.0 [26]
聚甲基丙烯酸甲酯/二氧化锆纳米颗粒 80~240 97.7 86.7 3.5 [27]
聚甲基丙烯酸甲酯/二氧化硅纳米颗粒 0.8 480 96.5 90.3 4.0 [28]
聚环氧乙烷/三氧化二铝纳米颗粒 0.4~1.8 25~60 90.2 90.0 6.1 本文

图10

FPRC-4纤维膜的日间辐射降温效果演示"

[1] MANDAL J, YANG Y, YU N F, et al. Paints as a scalable and effective radiative cooling technology for buildings[J]. Joule, 2020, 4(7): 1350-1356.
[2] BROWN J S, DOMANSKI P A. Review of alternative cooling technologies[J]. Applied Thermal Engineering, 2014, 64(1/2): 252-262.
[3] ZHANG Q, WANG S H, WANG X Y, et al. Recent progress in daytime radiative cooling: advanced material designs and applications[J]. Small Methods, 2022. DOI: 10.1002/smtd.202101379.
[4] ZHAO D L, AILI A, ZHAI Y, et al. Radiative sky cooling: fundamental principles, materials, and applications[J]. Applied Physics Reviews, 2019. DOI: 10.1063/1.5087281.
[5] LI Z H, CHEN Q Y, SONG Y, et al. Fundamentals, materials, and applications for daytime radiative cooling[J]. Advanced Materials Technologies, 2020. DOI: 10.1002/admt.201901007.
[6] YIN X B, YANG R G, TAN G, et al. Terrestrial radiative cooling: using the cold universe as a renewable and sustainable energy source[J]. Science, 2020, 370(6518): 786-791.
doi: 10.1126/science.abb0971 pmid: 33184205
[7] STARK A K. Methods for rejecting daytime waste heat to outer space[J]. National Science Review, 2017, 4(6): 789-790.
[8] LIM X Z. The super-cool materials that send heat to space[J]. Nature, 2020, 577(7788): 18-20.
[9] 李晗, 张恒, 甄琪, 等. 辐射降温纤维材料的成型工艺及其应用研究进展[J]. 毛纺科技, 2023, 51(2): 119-128.
LI Han, ZHANG Heng, ZHEN Qi, et al. Research progress on forming process and application of radiation cooling fiber materials[J]. Wool Textile Journal 2023, 51(2):119-128.
[10] RAMAN A P, ABOU Anoma M, ZHU X, et al. Passive radiative cooling below ambient air temperature under direct sunlight[J]. Nature, 2014, 515(7528): 540-544.
[11] REPHAELI E, RAMAN A, FAN S H. Ultrabroad band photonic structures to achieve high-performance daytime radiative cooling[J]. Nano Letters, 2013, 13(4): 1457-1461.
[12] HUANG M C, XUE C H, HUANG J Y, et al. A hierarchically structured self-cleaning energy-free polymer film for daytime radiative cooling[J]. Chemical Engineering Journal, 2022. DOI: 10.1016/j.cej.2022.136239.
[13] ZHANG X S, YANG W F, SHAO Z W, et al. A moisture-wicking passive radiative cooling hierarchical metafabric[J]. ACS Nano, 2022, 16(2): 2188-2197.
[14] HSU P C, SONG A Y, CATRYSSE P B, et al. Radiative human body cooling by nanoporous polyethylene textile[J]. Science, 2016, 353(6303): 1019-1023.
[15] ZHONG S J, YI L M, ZHANG J W, et al. Self-cleaning and spectrally selective coating on cotton fabric for passive daytime radiative cooling[J]. Chemical Engineering Journal, 2021. 10.1016/j.cej.2020.127104.
[16] MIKHAIL B, THOMAS F, MARTIN S, et al. Preparation of fibers with nanoscaled morphologies: electrospinning of polymer blends[J]. Polymer Engineering and Science, 2001, 41(6): 982-989.
[17] SHI S, SI Y F, HAN Y T, et al. Recent progress in protective membranes fabricated via electrospinning: advanced materials, biomimetic structures, and functional applications[J]. Advanced Materials, 2021. DOI: 10.1002/adma.202107938.
[18] ZHANG D X, ZHANG H Y, XU Z G, et al. Recent advances in electrospun membranes for radiative cooling[J]. Materials, 2023. DOI: 10.3390/ma16103677.
[19] KLEINE T S, LEE T, CAROTHERS K J, et al. Infrared fingerprint engineering: a molecular-design approach to long-wave infrared transparency with polymeric materials[J]. Angewandte Chemie-International Edition, 2019, 58(49): 17656-17660.
[20] YANG J H, LEI T D, YANG X, et al. Investigation of keratin/poly(ethylene oxide) nanofiber membrane prepared with different post-crosslinking method[J]. Fibers and Polymers, 2023, 24(2): 715-727.
[21] WANG X, LIU X H, LI Z Y, et al. Scalable flexible hybrid membranes with photonic structures for daytime radiative cooling[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.201907562.
[22] 李海涛, 樊利存, 程浩艳, 等. 烧结工艺对纳米晶种微晶陶瓷刚玉磨料结构与性能的影响[J]. 硅酸盐通报, 2023, 42(6): 2182-2189.
LI Haitao, FAN Licun, CHENG Haoyan, et al. Effect of sintering process on structure and properties of microcrystalline ceramic corundum abrasive with nano-seed[J]. Bulletin of the Chinese Ceramic Society, 2023, 42(6): 2182-2189.
[23] JING W L, ZHANG S, ZHANG W. Scalable and flexible electrospun film for daytime subambient radiative cooling[J]. ACS Applied Materials & Interfaces, 2021, 13(25): 29558-29566.
[24] LI M, ZHANG M P, MAHAR F K, et al. Fabrication of fibrous nanofiber membranes for passive radiation cooling[J]. Journal of Materials Science, 2022, 57(33): 16080-16090.
[25] 吴钦鑫, 侯成义, 李耀刚, 等. 辐射降温纳米纤维医用防护服面料及传感系统集成[J]. 纺织学报, 2021, 42(9): 24-30.
WU Qinxin, HOU Chengyi, LI Yaogang, et al. Radiative cooling nanofiber medical fabrics and sensor system integration[J]. Journal of Textile Research, 2021, 42(9): 24-30.
[26] LI D, LIU X, LI W, et al. Scalable and hierarchically designed polymer film as a selective thermal emitter for high-performance all-day radiative cooling[J]. Nature Nanotechnology, 2021, 16(2): 153-158.
doi: 10.1038/s41565-020-00800-4 pmid: 33199884
[27] 张帅, 荆为龙, 朱海涛. PMMA基复合薄膜的日间辐射制冷特性研究[J]. 化工新型材料, 2022, 50(3): 94-99.
ZHANG Shuai, JING Weilong, ZHU Haitao. Study on the daytime radiant cooling property of PMMA-based composite film[J]. New Chemical Materials, 2022, 50(3): 94-99.
[28] 钟明峰, 程海鑫, 张志杰, 等. 辐射制冷纳米复合纤维的制备与应用[J]. 华南理工大学学报(自然科学版), 2021, 49(9): 95-100.
doi: 10.12141/j.issn.1000-565X.200659
ZHONG Mingfeng, CHENG Haixin, ZHANG Zhijie, et al. Preparation and application of radiative cooling nanocomposite fiber[J]. Journal of South China University of Technology (Natural Science Edition), 2021, 49(9): 95-100.
[1] 房磊, 刘秀明, 贾娇娇, 蔺志浩, 任燕飞, 侯凯文, 巩继贤, 扈延龄. 高分子量壳聚糖皮芯结构微纳米纤维膜制备[J]. 纺织学报, 2024, 45(09): 1-9.
[2] 蔺志浩, 房磊, 贾娇娇, 扈延龄, 房宽峻. 负载生长因子的微纳米纤维创面敷料的制备与应用研究进展[J]. 纺织学报, 2024, 45(09): 244-251.
[3] 王浩然, 于影, 左雨欣, 顾志清, 卢海龙, 陈洪立, 柯俊. 聚乙烯亚胺/聚丙烯腈复合纤维薄膜的制备及其功能化应用[J]. 纺织学报, 2024, 45(09): 26-32.
[4] 杨硕, 赵朋举, 程春祖, 李晨暘, 程博闻. 非对称润湿性纤维复合膜的制备及其油水分离性能[J]. 纺织学报, 2024, 45(08): 10-17.
[5] 王永政, 黄林涛, 宋付权. 石油沥青/聚丙烯腈静电纺碳纳米纤维的制备工艺优化及其性能[J]. 纺织学报, 2024, 45(08): 107-115.
[6] 闫迪, 王雪芳, 谭文萍, 高国金, 明津法, 宁新. 富咪唑型多孔左旋聚乳酸纳米纤维膜制备及其双重净水性能[J]. 纺织学报, 2024, 45(08): 116-126.
[7] 陈灿, 拖晓航, 王迎. 取向聚氨酯纳米纤维膜卷纱的制备及其力学性能[J]. 纺织学报, 2024, 45(08): 134-141.
[8] 钱洋, 张璐, 李晨阳, 王荣武. 静电纺海藻酸钠复合纳米纤维膜制备及其性能[J]. 纺织学报, 2024, 45(08): 18-25.
[9] 刘嘉炜, 季东晓, 覃小红. 空气过滤用静电纺纳米纤维材料研究进展[J]. 纺织学报, 2024, 45(08): 35-43.
[10] 刘德龙, 王红霞, 林童. 气流辅助的静电纺丝技术研究进展[J]. 纺织学报, 2024, 45(08): 44-53.
[11] 杨培芹, 潘志娟. 丁香酚/桑皮微纳米纤维膜的制备及其性能[J]. 纺织学报, 2024, 45(08): 72-80.
[12] 于承浩, 王元非, 于腾波, 吴桐. 热致自卷曲左旋聚乳酸/聚乳酸-羟基乙酸共聚物纳米纤维血管支架制备及其性能[J]. 纺织学报, 2024, 45(07): 18-23.
[13] 于雯, 邓南平, 唐湘泉, 康卫民, 程博闻. 静电溶吹微纳无机纤维制备技术及其应用进展[J]. 纺织学报, 2024, 45(07): 230-239.
[14] 刘思彤, 金丹, 孙东明, 李懿轩, 王艳慧, 王静, 王原. 静电纺纳米纤维结构的研究进展[J]. 纺织学报, 2024, 45(06): 201-209.
[15] 徐振凯, 马鸣, 蔺多佳, 刘航, 张剑峰, 夏鑫. 自支撑聚吡咙基碳纤维负极材料的制备及其电化学性能[J]. 纺织学报, 2024, 45(06): 23-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!